Nuprl Lemma : empty-cubical-subset
∀[I:fset(ℕ)]. ∀[A,B:Top].  I,0 ⊢ <A, B>
Proof
Definitions occuring in Statement : 
cubical-type: {X ⊢ _}, 
cubical-subset: I,psi, 
face_lattice: face_lattice(I), 
lattice-0: 0, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
top: Top, 
member: t ∈ T, 
pair: <a, b>
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-type: {X ⊢ _}, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
top_wf, 
fset_wf, 
nat_wf, 
empty-cubical-subset-I_cube, 
I_cube_wf, 
cubical-subset_wf, 
lattice-0_wf, 
face_lattice_wf, 
subtype_rel_self, 
names_wf, 
assert_wf, 
fset-antichain_wf, 
union-deq_wf, 
names-deq_wf, 
fset-all_wf, 
fset-contains-none_wf, 
face-lattice-constraints_wf, 
names-hom_wf, 
bdd-distributive-lattice_wf, 
cube-set-restriction_wf, 
all_wf, 
equal_wf, 
nh-id_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
cube-set-restriction-id, 
iff_weakening_equal, 
nh-comp_wf, 
cube-set-restriction-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
dependent_pairEquality, 
functionExtensionality, 
rename, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
setEquality, 
unionEquality, 
productEquality, 
lambdaEquality, 
functionEquality, 
setElimination, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
independent_isectElimination, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[A,B:Top].    I,0  \mvdash{}  <A,  B>
Date html generated:
2017_10_05-AM-01_31_23
Last ObjectModification:
2017_07_28-AM-09_42_17
Theory : cubical!type!theory
Home
Index