Nuprl Lemma : extend-face-term-unique
∀[I:fset(ℕ)]. ∀[phi:Point(face_lattice(I))]. ∀[u:{I,phi ⊢ _:𝔽}]. ∀[a:Point(face_lattice(I))].
  a = extend-face-term(I;phi;u) ∈ Point(face_lattice(I)) 
  supposing a ≤ phi ∧ (∀[g:{f:I ⟶ I| (phi f) = 1} ]. ((a)<g> = u(g) ∈ Point(face_lattice(I))))
Proof
Definitions occuring in Statement : 
extend-face-term: extend-face-term(I;phi;u), 
face-type: 𝔽, 
cubical-term-at: u(a), 
cubical-term: {X ⊢ _:A}, 
cubical-subset: I,psi, 
name-morph-satisfies: (psi f) = 1, 
fl-morph: <f>, 
face_lattice: face_lattice(I), 
names-hom: I ⟶ J, 
lattice-le: a ≤ b, 
lattice-point: Point(l), 
fset: fset(T), 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
I_cube: A(I), 
functor-ob: ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
so_apply: x[s], 
uimplies: b supposing a, 
cand: A c∧ B, 
cubical-subset: I,psi, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P), 
names-hom: I ⟶ J, 
cat-arrow: cat-arrow(C), 
pi2: snd(t), 
cube-cat: CubeCat, 
name-morph-satisfies: (psi f) = 1, 
bounded-lattice-hom: Hom(l1;l2), 
lattice-hom: Hom(l1;l2), 
cubical-type-at: A(a), 
face-type: 𝔽, 
constant-cubical-type: (X)
Lemmas referenced : 
extend-face-term-uniqueness, 
cubical-term_wf, 
cubical-subset_wf, 
subtype_rel_self, 
I_cube_wf, 
face-presheaf_wf, 
small_cubical_set_subtype, 
face-type_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fset_wf, 
nat_wf, 
extend-face-term_wf, 
extend-face-term-le, 
extend-face-term-property, 
names-hom_wf, 
name-morph-satisfies_wf, 
lattice-le_wf, 
fl-morph_wf, 
cubical-term-at_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
applyEquality, 
sqequalRule, 
instantiate, 
because_Cache, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
setIsType, 
productIsType, 
isectIsType, 
equalityIsType1, 
setElimination, 
rename
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:Point(face\_lattice(I))].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[a:Point(face\_lattice(I))].
    a  =  extend-face-term(I;phi;u)  supposing  a  \mleq{}  phi  \mwedge{}  (\mforall{}[g:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].  ((a)<g>  =  u(g)))
Date html generated:
2019_11_05-AM-10_33_14
Last ObjectModification:
2018_11_08-PM-06_03_48
Theory : cubical!type!theory
Home
Index