Nuprl Lemma : extend-face-term-le

[I:fset(ℕ)]. ∀[phi:𝔽(I)]. ∀[u:{I,phi ⊢ _:𝔽}].  extend-face-term(I;phi;u) ≤ phi


Proof




Definitions occuring in Statement :  extend-face-term: extend-face-term(I;phi;u) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-subset: I,psi face-presheaf: 𝔽 face_lattice: face_lattice(I) I_cube: A(I) lattice-le: a ≤ b fset: fset(T) nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T extend-face-term: extend-face-term(I;phi;u) all: x:A. B[x] subtype_rel: A ⊆B I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a implies:  Q top: Top guard: {T} lattice-le: a ≤ b cubical-subset: I,psi names-cat: NamesCat rep-sub-sheaf: rep-sub-sheaf(C;X;P) uiff: uiff(P;Q) exists: x:A. B[x] cand: c∧ B squash: T name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True iff: ⇐⇒ Q cubical-type-at: A(a) face-type: 𝔽 constant-cubical-type: (X) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) order: Order(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  face_lattice_components_wf subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf set_wf fset-disjoint_wf equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-fset-join_wf bdd-distributive-lattice-subtype-bdd-lattice decidable__equal_face_lattice fset-image_wf product-deq_wf deq-fset_wf strong-subtype-deq-subtype pi1_wf_top pi2_wf strong-subtype-set2 face_lattice-deq_wf irr_face_wf fset-subtype2 fset-member_wf cubical-term_wf cubical-subset_wf face-type_wf I_cube_wf face-presheaf_wf nat_wf I_cube_pair_redex_lemma cat_arrow_triple_lemma irr-face-morph_wf name-morph-satisfies_wf irr-face-morph-satisfies lattice-le_wf lattice-fset-join-is-lub member-fset-image-iff fl-morph_wf lattice-hom-le squash_wf true_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf iff_weakening_equal lattice-1-le-iff strong-subtype-set3 cubical-term-at_wf sq_stable__equal lattice-le-order bdd-distributive-lattice-subtype-lattice lattice-meet-le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality sqequalRule isectElimination setEquality unionEquality hypothesis because_Cache productEquality lambdaEquality productElimination instantiate cumulativity universeEquality independent_isectElimination independent_functionElimination lambdaFormation independent_pairEquality isect_memberEquality voidElimination voidEquality setElimination rename equalityTransitivity equalitySymmetry dependent_set_memberEquality axiomEquality hyp_replacement applyLambdaEquality dependent_pairFormation independent_pairFormation imageMemberEquality baseClosed imageElimination natural_numberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[u:\{I,phi  \mvdash{}  \_:\mBbbF{}\}].    extend-face-term(I;phi;u)  \mleq{}  phi



Date html generated: 2017_10_05-AM-07_33_49
Last ObjectModification: 2017_03_03-AM-00_56_55

Theory : cubical!type!theory


Home Index