Nuprl Lemma : path-term-1
∀X:j⊢. ∀psi:{X ⊢ _:𝔽}. ∀T:{X ⊢ _}. ∀a,b:{X ⊢ _:T}. ∀w:{X, psi ⊢ _:(Path_T a b)}.
  (path-term(psi;w;a;b;1(𝕀)) = b ∈ {X ⊢ _:T})
Proof
Definitions occuring in Statement : 
path-term: path-term(phi;w;a;b;r)
, 
path-type: (Path_A a b)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-1: 1(𝕀)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
path-term: path-term(phi;w;a;b;r)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
interval-1: 1(𝕀)
, 
face-zero: (i=0)
, 
case-term: (u ∨ v)
, 
cubical-term-at: u(a)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
dm-neg: ¬(x)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM1: 1
, 
lattice-1: 1
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
eq_atom: x =a y
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
, 
insert: insert(a;L)
, 
eval_list: eval_list(t)
, 
deq-member: x ∈b L
, 
lattice-join: a ∨ b
, 
opposite-lattice: opposite-lattice(L)
, 
so_lambda: λ2x y.t[x; y]
, 
lattice-meet: a ∧ b
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
filter: filter(P;l)
, 
lattice-fset-meet: /\(s)
, 
empty-fset: {}
, 
lattice-0: 0
, 
dM0: 0
, 
fl-eq: (x==y)
, 
free-dml-deq: free-dml-deq(T;eq)
, 
deq-fset: deq-fset(eq)
, 
isl: isl(x)
, 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
fset-null: fset-null(s)
, 
null: null(as)
, 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
decidable__and, 
bnot: ¬bb
, 
decidable__fset-member, 
assert-deq-fset-member, 
deq-fset-member: a ∈b s
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
same-cubical-term: X ⊢ u=v:A
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
cubical-path-app-1, 
context-subset_wf, 
thin-context-subset, 
context-subset-term-subtype, 
subset-cubical-term2, 
sub_cubical_set_self, 
path-type_wf, 
subset-cubical-term, 
context-subset-is-subset, 
path-type-subset, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
face-type_wf, 
cubical_set_wf, 
cubical-term-at_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
bfalse_wf, 
case-term-same2, 
face-1_wf, 
equal_functionality_wrt_subtype_rel2, 
face-or_wf, 
sub_cubical_set_wf, 
squash_wf, 
true_wf, 
face-or-1, 
iff_weakening_equal, 
context-1-subset, 
decidable__equal_fset, 
decidable_functionality, 
iff_preserves_decidability, 
decidable__and2, 
decidable__f-subset, 
decidable__all_fset, 
iff_weakening_uiff, 
fset-all-iff, 
decidable__assert, 
decidable__and, 
decidable__fset-member, 
assert-deq-fset-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
Error :memTop, 
universeIsType, 
instantiate, 
equalitySymmetry, 
functionExtensionality, 
equalityTransitivity, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}psi:\{X  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:T\}.  \mforall{}w:\{X,  psi  \mvdash{}  \_:(Path\_T  a  b)\}.
    (path-term(psi;w;a;b;1(\mBbbI{}))  =  b)
Date html generated:
2020_05_20-PM-05_10_17
Last ObjectModification:
2020_04_10-AM-11_42_17
Theory : cubical!type!theory
Home
Index