Nuprl Lemma : path-term-1

X:j⊢. ∀psi:{X ⊢ _:𝔽}. ∀T:{X ⊢ _}. ∀a,b:{X ⊢ _:T}. ∀w:{X, psi ⊢ _:(Path_T b)}.
  (path-term(psi;w;a;b;1(𝕀)) b ∈ {X ⊢ _:T})


Proof




Definitions occuring in Statement :  path-term: path-term(phi;w;a;b;r) path-type: (Path_A b) context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] path-term: path-term(phi;w;a;b;r) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a interval-1: 1(𝕀) face-zero: (i=0) case-term: (u ∨ v) cubical-term-at: u(a) ifthenelse: if then else fi  bfalse: ff dm-neg: ¬(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum dM1: 1 lattice-1: 1 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] eq_atom: =a y free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt fset-singleton: {x} cons: [a b] nil: [] it: fset-union: x ⋃ y l-union: as ⋃ bs insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L lattice-join: a ∨ b opposite-lattice: opposite-lattice(L) so_lambda: λ2y.t[x; y] lattice-meet: a ∧ b fset-ac-glb: fset-ac-glb(eq;ac1;ac2) fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} filter: filter(P;l) lattice-fset-meet: /\(s) empty-fset: {} lattice-0: 0 dM0: 0 fl-eq: (x==y) free-dml-deq: free-dml-deq(T;eq) deq-fset: deq-fset(eq) isl: isl(x) decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset iff_weakening_uiff fset-all-iff decidable__assert fset-null: fset-null(s) null: null(as) dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) decidable__and bnot: ¬bb decidable__fset-member assert-deq-fset-member deq-fset-member: a ∈b s sq_type: SQType(T) implies:  Q guard: {T} same-cubical-term: X ⊢ u=v:A squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  cubical-path-app-1 context-subset_wf thin-context-subset context-subset-term-subtype subset-cubical-term2 sub_cubical_set_self path-type_wf subset-cubical-term context-subset-is-subset path-type-subset cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf face-type_wf cubical_set_wf cubical-term-at_wf I_cube_wf fset_wf nat_wf cubical-term-equal subtype_base_sq bool_wf bool_subtype_base bfalse_wf case-term-same2 face-1_wf equal_functionality_wrt_subtype_rel2 face-or_wf sub_cubical_set_wf squash_wf true_wf face-or-1 iff_weakening_equal context-1-subset decidable__equal_fset decidable_functionality iff_preserves_decidability decidable__and2 decidable__f-subset decidable__all_fset iff_weakening_uiff fset-all-iff decidable__assert decidable__and decidable__fset-member assert-deq-fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule because_Cache independent_isectElimination Error :memTop,  universeIsType instantiate equalitySymmetry functionExtensionality equalityTransitivity cumulativity dependent_functionElimination independent_functionElimination lambdaEquality_alt imageElimination inhabitedIsType natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}psi:\{X  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}T:\{X  \mvdash{}  \_\}.  \mforall{}a,b:\{X  \mvdash{}  \_:T\}.  \mforall{}w:\{X,  psi  \mvdash{}  \_:(Path\_T  a  b)\}.
    (path-term(psi;w;a;b;1(\mBbbI{}))  =  b)



Date html generated: 2020_05_20-PM-05_10_17
Last ObjectModification: 2020_04_10-AM-11_42_17

Theory : cubical!type!theory


Home Index