Nuprl Lemma : paths-are-refl-iff

[X:j⊢]. ∀[A:{X ⊢ _}].
  uiff(∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}.  (p refl(p 0(𝕀)) ∈ {Z ⊢ _:Path((A)s)});∀Z:j⊢. ∀s:Z j⟶ X.
                                                                                            ∀p:{Z ⊢ _:Path((A)s)}.
                                                                                              ∀[x,y:{Z ⊢ _:𝕀}].
                                                                                                (p x
                                                                                                y
                                                                                                ∈ {Z ⊢ _:(A)s}))


Proof




Definitions occuring in Statement :  cubical-refl: refl(a) cubicalpath-app: pth r pathtype: Path(A) interval-0: 0(𝕀) interval-type: 𝕀 cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q true: True rev_implies:  Q squash: T prop: guard: {T} iff: ⇐⇒ Q cubical-path-app: pth r cubical-type: {X ⊢ _} csm-ap-type: (AF)s cc-fst: p interval-type: 𝕀 csm-comp: F csm-ap: (s)x compose: g cc-snd: q constant-cubical-type: (X) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C)
Lemmas referenced :  cube_set_map_wf cubical-term_wf pathtype_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-refl_wf cubicalpath-app_wf interval-0_wf path-type-subtype interval-type_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal refl-path-app term-to-pathtype-eta term-to-pathtype_wf csm-pathtype cube-context-adjoin_wf cc-fst_wf csm-comp_wf csm-ap-term_wf equal_functionality_wrt_subtype_rel2 cc-snd_wf csm-cubical-refl cubical-path-app_wf csm-cubicalpath-app csm-interval-0 subset-cubical-term2 sub_cubical_set_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality isect_memberEquality_alt isectElimination axiomEquality hypothesis isectIsTypeImplies inhabitedIsType functionIsTypeImplies functionIsType universeIsType extract_by_obid instantiate applyEquality equalityIstype because_Cache isectIsType lambdaFormation_alt equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination productElimination applyLambdaEquality setElimination rename cumulativity hyp_replacement Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].
    uiff(\mforall{}Z:j\mvdash{}.  \mforall{}s:Z  j{}\mrightarrow{}  X.  \mforall{}p:\{Z  \mvdash{}  \_:Path((A)s)\}.    (p  =  refl(p  @  0(\mBbbI{})));\mforall{}Z:j\mvdash{}.  \mforall{}s:Z  j{}\mrightarrow{}  X.
                                                                                                                                              \mforall{}p:\{Z  \mvdash{}  \_:Path((A)s)\}.
                                                                                                                                                  \mforall{}[x,y:\{Z  \mvdash{}  \_:\mBbbI{}\}].
                                                                                                                                                      (p  @  x  =  p  @  y))



Date html generated: 2020_05_20-PM-03_43_53
Last ObjectModification: 2020_04_07-PM-06_01_45

Theory : cubical!type!theory


Home Index