Nuprl Lemma : satisfies-s-face-lattice-tube
∀I:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀phi:𝔽(I). ∀j:{j:ℕ| ¬j ∈ I+i} . ∀K:fset(ℕ). ∀f:K ⟶ I+j+i.
  ((s(face-lattice-tube(I;phi;j)) f) = 1
  ⇐⇒ (s(phi) s ⋅ f) = 1 ∨ ((s ⋅ f j) = 0 ∈ Point(dM(K))) ∨ ((s ⋅ f j) = 1 ∈ Point(dM(K))))
Proof
Definitions occuring in Statement : 
name-morph-satisfies: (psi f) = 1, 
face-lattice-tube: face-lattice-tube(I;phi;j), 
face-presheaf: 𝔽, 
cube-set-restriction: f(s), 
I_cube: A(I), 
nc-s: s, 
add-name: I+i, 
nh-comp: g ⋅ f, 
names-hom: I ⟶ J, 
dM1: 1, 
dM0: 0, 
dM: dM(I), 
lattice-point: Point(l), 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
or: P ∨ Q, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
I_cube: A(I), 
functor-ob: functor-ob(F), 
pi1: fst(t), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
DeMorgan-algebra: DeMorganAlgebra, 
guard: {T}, 
names-hom: I ⟶ J, 
names: names(I), 
nat: ℕ, 
or: P ∨ Q, 
uiff: uiff(P;Q)
Lemmas referenced : 
I_cube_wf, 
not_wf, 
set_wf, 
face-presheaf_wf, 
cube-set-restriction_wf, 
names-deq_wf, 
union-deq_wf, 
fset-antichain_wf, 
assert_wf, 
names_wf, 
fset_wf, 
name-morph-satisfies-comp, 
iff_wf, 
dM1_wf, 
dM0_wf, 
strong-subtype-self, 
le_wf, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
int-deq_wf, 
nat_wf, 
fset-member_wf, 
trivial-member-add-name1, 
names-hom_wf, 
DeMorgan-algebra-axioms_wf, 
lattice-join_wf, 
lattice-meet_wf, 
uall_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-structure-subtype, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
DeMorgan-algebra-structure_wf, 
subtype_rel_set, 
dM_wf, 
lattice-point_wf, 
equal_wf, 
or_wf, 
satisfies-face-lattice-tube, 
face-lattice-constraints_wf, 
fset-contains-none_wf, 
fset-all_wf, 
subtype_rel_self, 
fl-morph-face-lattice-tube1, 
name-morph-satisfies_wf, 
f-subset-add-name, 
nc-s_wf, 
add-name_wf, 
nh-comp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
independent_pairFormation, 
applyEquality, 
sqequalRule, 
setEquality, 
productEquality, 
lambdaEquality, 
addLevel, 
productElimination, 
impliesFunctionality, 
independent_functionElimination, 
instantiate, 
cumulativity, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
intEquality, 
natural_numberEquality, 
orFunctionality, 
unionEquality
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}phi:\mBbbF{}(I).  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I+i\}  .  \mforall{}K:fset(\mBbbN{}).  \mforall{}f:K  {}\mrightarrow{}  I+j+i.
    ((s(face-lattice-tube(I;phi;j))  f)  =  1  \mLeftarrow{}{}\mRightarrow{}  (s(phi)  s  \mcdot{}  f)  =  1  \mvee{}  ((s  \mcdot{}  f  j)  =  0)  \mvee{}  ((s  \mcdot{}  f  j)  =  1))
Date html generated:
2016_05_18-PM-00_20_58
Last ObjectModification:
2016_02_05-PM-05_46_56
Theory : cubical!type!theory
Home
Index