Nuprl Lemma : trivial-section_wf

[I:fset(ℕ)]. ∀[X:Top]. ∀[phi:Point(face_lattice(I))].  () ∈ {I,phi ⊢ _:X} supposing phi 0 ∈ Point(face_lattice(I))


Proof




Definitions occuring in Statement :  trivial-section: () cubical-term: {X ⊢ _:A} cubical-subset: I,psi face_lattice: face_lattice(I) lattice-0: 0 lattice-point: Point(l) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] top: Top member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] name-morph-satisfies: (psi f) 1 bdd-distributive-lattice: BoundedDistributiveLattice bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) squash: T true: True guard: {T} iff: ⇐⇒ Q implies:  Q not: ¬A false: False all: x:A. B[x]
Lemmas referenced :  cubical-subset-I_cube-member subtype_rel_self fset_wf names_wf assert_wf fset-antichain_wf union-deq_wf names-deq_wf fset-all_wf fset-contains-none_wf face-lattice-constraints_wf equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf fl-morph_wf bounded-lattice-hom_wf bdd-distributive-lattice_wf squash_wf true_wf fl-morph-0 iff_weakening_equal face-lattice-0-not-1 I_cube_wf cubical-subset_wf nat_wf lattice-1_wf names-hom_wf lattice-0_wf top_wf all_wf cubical-type-at_wf cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule setEquality unionEquality because_Cache hypothesis productEquality lambdaEquality productElimination equalitySymmetry hyp_replacement applyLambdaEquality instantiate cumulativity universeEquality independent_isectElimination setElimination rename equalityTransitivity imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination voidElimination lambdaFormation axiomEquality isect_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[X:Top].  \mforall{}[phi:Point(face\_lattice(I))].    ()  \mmember{}  \{I,phi  \mvdash{}  \_:X\}  supposing  phi  =  0



Date html generated: 2017_10_05-AM-01_22_48
Last ObjectModification: 2017_07_28-AM-09_35_01

Theory : cubical!type!theory


Home Index