Nuprl Lemma : univ-a_wf

[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (UA ∈ {G ⊢ _:(Equiv(decode(A);decode(B)) ⟶ (Path_c𝕌 B))})


Proof




Definitions occuring in Statement :  univ-a: UA universe-decode: decode(t) cubical-universe: c𝕌 cubical-equiv: Equiv(T;A) path-type: (Path_A b) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} univ-a: UA all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  cubical-equiv_wf universe-decode_wf csm-ap-term-universe cubical_set_cumulativity-i-j cube-context-adjoin_wf cubical-type-cumulativity2 cc-fst_wf cubical-lam_wf cubical-type-cumulativity path-type_wf cubical-universe_wf istype-cubical-universe-term cubical_set_wf csm-path-type cubical-term-eqcd csm-cubical-universe equiv-path_wf cc-snd_wf csm-cubical-equiv csm-universe-decode
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality sqequalRule because_Cache equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement universeIsType dependent_functionElimination independent_isectElimination Error :memTop

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (UA  \mmember{}  \{G  \mvdash{}  \_:(Equiv(decode(A);decode(B))  {}\mrightarrow{}  (Path\_c\mBbbU{}  A  B))\})



Date html generated: 2020_05_20-PM-07_30_47
Last ObjectModification: 2020_04_28-PM-10_56_54

Theory : cubical!type!theory


Home Index