Nuprl Lemma : univ-a_wf
∀[G:j⊢]. ∀[A,B:{G ⊢ _:c𝕌}].  (UA ∈ {G ⊢ _:(Equiv(decode(A);decode(B)) ⟶ (Path_c𝕌 A B))})
Proof
Definitions occuring in Statement : 
univ-a: UA
, 
universe-decode: decode(t)
, 
cubical-universe: c𝕌
, 
cubical-equiv: Equiv(T;A)
, 
path-type: (Path_A a b)
, 
cubical-fun: (A ⟶ B)
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
univ-a: UA
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
cubical-equiv_wf, 
universe-decode_wf, 
csm-ap-term-universe, 
cubical_set_cumulativity-i-j, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cc-fst_wf, 
cubical-lam_wf, 
cubical-type-cumulativity, 
path-type_wf, 
cubical-universe_wf, 
istype-cubical-universe-term, 
cubical_set_wf, 
csm-path-type, 
cubical-term-eqcd, 
csm-cubical-universe, 
equiv-path_wf, 
cc-snd_wf, 
csm-cubical-equiv, 
csm-universe-decode
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
applyEquality, 
sqequalRule, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
dependent_functionElimination, 
independent_isectElimination, 
Error :memTop
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,B:\{G  \mvdash{}  \_:c\mBbbU{}\}].    (UA  \mmember{}  \{G  \mvdash{}  \_:(Equiv(decode(A);decode(B))  {}\mrightarrow{}  (Path\_c\mBbbU{}  A  B))\})
Date html generated:
2020_05_20-PM-07_30_47
Last ObjectModification:
2020_04_28-PM-10_56_54
Theory : cubical!type!theory
Home
Index