Nuprl Lemma : geo-intersect-points-iff
∀e:EuclideanPlane. ∀a,b,c,d:Point.
  (ab \/ cd
  ⇐⇒ a ≠ b
      ∧ c ≠ d
      ∧ (∃a1,b1,c1,d1,v:Point
          (a1-v-b1
          ∧ c1-v-d1
          ∧ Colinear(a1;a;b)
          ∧ Colinear(b1;a;b)
          ∧ Colinear(c1;c;d)
          ∧ Colinear(d1;c;d)
          ∧ a1 leftof c1d1
          ∧ b1 leftof d1c1)))
Proof
Definitions occuring in Statement : 
geo-intersect-points: ab \/ cd, 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-strict-between: a-b-c, 
geo-left: a leftof bc, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
geo-intersect-points: ab \/ cd, 
euclidean-plane: EuclideanPlane, 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
or: P ∨ Q, 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
l_member: (x ∈ l), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
top: Top, 
select: L[n], 
cons: [a / b], 
less_than: a < b, 
true: True, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
subtract: n - m, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
geo-lsep: a # bc, 
geo-strict-between: a-b-c, 
oriented-plane: OrientedPlane, 
basic-geometry-: BasicGeometry-, 
geo-eq: a ≡ b
Lemmas referenced : 
geo-intersect-points_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-strict-between_wf, 
geo-colinear_wf, 
geo-left_wf, 
geo-point_wf, 
left-implies-sep, 
geo-SS_wf, 
sq_stable__colinear, 
sq_stable__geo-between, 
geo-sep-or, 
symmetric-point-construction, 
geo-sep-sym, 
colinear-lsep-cycle, 
lsep-all-sym2, 
geo-between-sep, 
geo-colinear-append, 
cons_wf, 
nil_wf, 
istype-void, 
istype-le, 
length_of_cons_lemma, 
length_of_nil_lemma, 
istype-less_than, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
l_member_wf, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lsep-all-sym, 
geo-colinear-same, 
geo-congruent-symmetry, 
geo-congruent-sep, 
left-between, 
geo-between_wf, 
not-lsep-iff-colinear, 
geo-between-symmetry, 
geo-strict-between-implies-colinear, 
lsep-colinear-sep, 
geo-lsep_wf, 
colinear-lsep-general, 
geo-strict-between-sep1, 
geo-colinear-cases, 
false_wf, 
stable__false, 
geo-eq_wf, 
left-between-implies-right1, 
geo-strict-between-implies-between, 
geo-strict-between-sep3, 
not-left-and-right, 
geo-colinear_functionality, 
geo-eq_weakening, 
geo-left_functionality, 
geo-sep_functionality, 
geo-eq_inversion, 
left-between-implies-right2, 
between-preserves-left-1, 
between-preserves-left-2, 
between-preserves-left-3, 
geo-strict-between-sep2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
productIsType, 
because_Cache, 
inhabitedIsType, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation_alt, 
natural_numberEquality, 
voidElimination, 
isect_memberEquality_alt, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
inlFormation_alt, 
functionIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (ab  \mbackslash{}/  cd
    \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b
            \mwedge{}  c  \mneq{}  d
            \mwedge{}  (\mexists{}a1,b1,c1,d1,v:Point
                    (a1-v-b1
                    \mwedge{}  c1-v-d1
                    \mwedge{}  Colinear(a1;a;b)
                    \mwedge{}  Colinear(b1;a;b)
                    \mwedge{}  Colinear(c1;c;d)
                    \mwedge{}  Colinear(d1;c;d)
                    \mwedge{}  a1  leftof  c1d1
                    \mwedge{}  b1  leftof  d1c1)))
Date html generated:
2019_10_16-PM-01_45_21
Last ObjectModification:
2019_08_19-PM-01_15_37
Theory : euclidean!plane!geometry
Home
Index