Nuprl Lemma : isosc-colinear-mid-exists
∀e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c # ab ⇒ ac ≅ bc ⇒ (out(c aa') ∧ out(c bb')) ⇒ a=m=b ⇒ a'c ≅ b'c ⇒ (∃m':Point. (out(c m'm) ∧ a'=m'=b')))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-out: out(p ab), 
geo-midpoint: a=m=b, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
cand: A c∧ B, 
guard: {T}, 
exists: ∃x:A. B[x], 
geo-triangle: a # bc, 
subtype_rel: A ⊆r B, 
heyting-geometry: HeytingGeometry, 
euclidean-plane: EuclideanPlane, 
oriented-plane: OrientedPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
geo-midpoint: a=m=b, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-lsep: a # bc, 
or: P ∨ Q, 
geo-out: out(p ab), 
basic-geometry: BasicGeometry, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q
Lemmas referenced : 
geo-out-triangle, 
geo-triangle-symmetry, 
isosceles-mid-exists, 
lsep-colinear-sep, 
subtype_rel_self, 
euclidean-plane-structure_wf, 
basic-geo-axioms_wf, 
geo-left-axioms_wf, 
lsep-all-sym, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
not_wf, 
geo-between_wf, 
geo-out_wf, 
geo-midpoint_wf, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
geo-primitives_wf, 
geo-triangle_wf, 
geo-point_wf, 
stable__not, 
or_wf, 
geo-sep_wf, 
minimal-double-negation-hyp-elim, 
geo-midpoint_functionality, 
geo-eq_weakening, 
geo-out_functionality, 
geo-congruent_functionality, 
geo-triangle_functionality, 
minimal-not-not-excluded-middle, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-out-cong-cong, 
isosc-bisectors-between-ns, 
geo-between-symmetry, 
geo-add-length-between, 
equal_wf, 
geo-length-type_wf, 
and_wf, 
geo-add-length_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
squash_wf, 
true_wf, 
basic-geometry_wf, 
iff_weakening_equal, 
geo-add-length-implies-eq-zero, 
geo-add-length-comm, 
geo-add-length-assoc, 
geo-add-length-is-zero, 
geo-zero-length-iff, 
geo-congruent-symmetry, 
geo-congruent-sep, 
isosc-bisectors-between_1-ns, 
geo-out-unicity, 
at-most-one-midpoint, 
geo-between-trivial, 
geo-between_functionality, 
geo-sep_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
because_Cache, 
dependent_pairFormation, 
applyEquality, 
sqequalRule, 
instantiate, 
isectElimination, 
setEquality, 
productEquality, 
cumulativity, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
setElimination, 
rename, 
lambdaEquality, 
imageElimination, 
universeEquality, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
promote_hyp, 
impliesLevelFunctionality
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  ab
    {}\mRightarrow{}  ac  \00D0  bc
    {}\mRightarrow{}  (out(c  aa')  \mwedge{}  out(c  bb'))
    {}\mRightarrow{}  a=m=b
    {}\mRightarrow{}  a'c  \00D0  b'c
    {}\mRightarrow{}  (\mexists{}m':Point.  (out(c  m'm)  \mwedge{}  a'=m'=b')))
Date html generated:
2017_10_02-PM-07_07_10
Last ObjectModification:
2017_08_10-PM-05_27_03
Theory : euclidean!plane!geometry
Home
Index