Nuprl Lemma : proj-point-sep_defA
∀e:EuclideanParPlane. ∀p,q:Point + Line.  (proj-point-sep(e;p;q) ⇒ (∃n:Line?. ((¬pp-sep(e;p;n)) ∧ pp-sep(e;q;n))))
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q), 
pp-sep: pp-sep(eu;p;l), 
euclidean-parallel-plane: EuclideanParPlane, 
geo-line: Line, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
unit: Unit, 
union: left + right
Definitions unfolded in proof : 
geo-intersect: L \/ M, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
true: True, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-line-sep: geo-line-sep(g;l;m), 
false: False, 
pp-sep: pp-sep(eu;p;l), 
not: ¬A, 
geo-lsep: a # bc, 
or: P ∨ Q, 
geo-plsep: p # l, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
geo-line: Line, 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
geo-perp-in: ab  ⊥x cd, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
right-angle: Rabc, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
euclidean-parallel-plane: EuclideanParPlane, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
proj-point-sep: proj-point-sep(eu;p;q), 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
geo-intersect-irreflexive, 
it_wf, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
equal_wf, 
pi2_wf, 
subtype_rel_product, 
top_wf, 
exists_wf, 
geo-lsep_wf, 
geo-intersect-symmetry, 
geo-intersect-lines-iff, 
geo-intersect_wf, 
Euclid-drop-perp-00, 
geo-incident-not-plsep, 
unit_wf2, 
not_wf, 
pp-sep_wf, 
geo-lsep_functionality, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
lsep-all-sym2, 
geo-eq_inversion, 
geo-eq_weakening, 
geo-colinear_functionality, 
pi1_wf_top, 
geo-incident-line, 
geo-line-from-points, 
geo-sep-sym, 
left-implies-sep, 
geo-incident_wf, 
geoline-subtype1, 
geo-plsep_wf, 
sq_stable__and, 
all_wf, 
right-angle_wf, 
sq_stable__colinear, 
sq_stable__all, 
geo-midpoint_wf, 
geo-congruent_wf, 
sq_stable__geo-congruent, 
sq_stable__geo-left, 
Euclid-erect-2perp, 
geo-sep_wf, 
geo-colinear-same, 
euclidean-plane-subtype-basic, 
basic-geometry_wf, 
geo-colinear_wf, 
proj-point-sep_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line_wf
Rules used in proof : 
inrEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
andLevelFunctionality, 
existsFunctionality, 
addLevel, 
dependent_pairEquality, 
inlEquality, 
independent_pairEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
isect_memberEquality, 
productEquality, 
lambdaEquality, 
functionEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
unionElimination, 
thin, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}p,q:Point  +  Line.
    (proj-point-sep(e;p;q)  {}\mRightarrow{}  (\mexists{}n:Line?.  ((\mneg{}pp-sep(e;p;n))  \mwedge{}  pp-sep(e;q;n))))
 Date html generated: 
2018_05_22-PM-01_16_08
 Last ObjectModification: 
2018_05_21-PM-03_25_02
Theory : euclidean!plane!geometry
Home
Index