Nuprl Lemma : hyp-dist_wf

[rv:InnerProductSpace]. ∀[x,y:Point].  (hyp (x,y) ∈ ℝ)


Proof




Definitions occuring in Statement :  hyp-dist: hyp (x,y) inner-product-space: InnerProductSpace real: ss-point: Point uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hyp-dist: hyp (x,y) subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop:
Lemmas referenced :  inv-cosh_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rsub_wf rmul_wf rsqrt_wf radd-non-neg int-to-real_wf rv-ip_wf rleq-int false_wf rv-ip-nonneg radd_wf rleq_wf real_wf req_wf hyp-distance-lemma1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality applyEquality instantiate independent_isectElimination isect_memberEquality because_Cache dependent_set_memberEquality dependent_functionElimination natural_numberEquality independent_functionElimination productElimination independent_pairFormation lambdaFormation lambdaEquality setElimination rename setEquality productEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    (hyp  (x,y)  \mmember{}  \mBbbR{})



Date html generated: 2017_10_05-AM-00_29_14
Last ObjectModification: 2017_06_23-PM-05_52_55

Theory : inner!product!spaces


Home Index