Nuprl Lemma : rv-isometry-implies-extensional
∀rv:InnerProductSpace. ∀f:Point ⟶ Point.  ∀x,y:Point.  (f x # f y ⇒ x # y) supposing Isometry(f)
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f), 
inner-product-space: InnerProductSpace, 
ss-sep: x # y, 
ss-point: Point, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
rv-isometry: Isometry(f), 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
req_weakening, 
rless_functionality, 
rv-isometry_wf, 
ss-sep_wf, 
rv-norm-positive-iff-ext, 
rv-sep-iff-ext, 
rmul_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-ip_wf, 
req_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-point_wf, 
inner-product-space_subtype, 
rv-sub_wf, 
rv-norm_wf, 
req_witness
Rules used in proof : 
independent_pairFormation, 
functionEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
functionExtensionality, 
hypothesis, 
applyEquality, 
extract_by_obid, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.    \mforall{}x,y:Point.    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Isometry(f)
Date html generated:
2016_11_08-AM-09_18_24
Last ObjectModification:
2016_11_02-PM-08_45_12
Theory : inner!product!spaces
Home
Index