Nuprl Lemma : rv-isometry-inverse
∀[rv:InnerProductSpace]. ∀[f,g:Point(rv) ⟶ Point(rv)].
  (Isometry(f)) supposing (Isometry(g) and (∀x:Point(rv). g (f x) ≡ x))
Proof
Definitions occuring in Statement : 
rv-isometry: Isometry(f)
, 
inner-product-space: InnerProductSpace
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rv-isometry: Isometry(f)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rv-isometry-injective, 
rv-isometry-implies-functional, 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rv-isometry_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-eq_wf, 
req_functionality, 
req_inversion, 
req_weakening, 
rv-norm_functionality, 
rv-sub_functionality, 
Error :ss-eq_weakening, 
req-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
isect_memberEquality_alt, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
universeIsType, 
functionIsType, 
instantiate, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point(rv)  {}\mrightarrow{}  Point(rv)].
    (Isometry(f))  supposing  (Isometry(g)  and  (\mforall{}x:Point(rv).  g  (f  x)  \mequiv{}  x))
Date html generated:
2020_05_20-PM-01_12_40
Last ObjectModification:
2020_01_06-PM-00_10_42
Theory : inner!product!spaces
Home
Index