Nuprl Lemma : rv-isometry-inverse

[rv:InnerProductSpace]. ∀[f,g:Point(rv) ⟶ Point(rv)].
  (Isometry(f)) supposing (Isometry(g) and (∀x:Point(rv). (f x) ≡ x))


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) inner-product-space: InnerProductSpace uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q rv-isometry: Isometry(f) subtype_rel: A ⊆B prop: guard: {T} uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rv-isometry-injective rv-isometry-implies-functional req_witness rv-norm_wf rv-sub_wf inner-product-space_subtype rv-isometry_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  Error :ss-eq_wf,  req_functionality req_inversion req_weakening rv-norm_functionality rv-sub_functionality Error :ss-eq_weakening,  req-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis because_Cache sqequalRule isect_memberEquality_alt applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry isectIsTypeImplies universeIsType functionIsType instantiate independent_isectElimination productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point(rv)  {}\mrightarrow{}  Point(rv)].
    (Isometry(f))  supposing  (Isometry(g)  and  (\mforall{}x:Point(rv).  g  (f  x)  \mequiv{}  x))



Date html generated: 2020_05_20-PM-01_12_40
Last ObjectModification: 2020_01_06-PM-00_10_42

Theory : inner!product!spaces


Home Index