Nuprl Lemma : free-dlwc-1-join-irreducible
∀T:Type. ∀eq:EqDecider(T). ∀Cs:T ⟶ fset(fset(T)). ∀x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
  (x ∨ y = 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
  ⇐⇒ (x = 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
      ∨ (y = 1 ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))))
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
lattice-1: 1, 
lattice-join: a ∨ b, 
lattice-point: Point(l), 
fset: fset(T), 
deq: EqDecider(T), 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
uimplies: b supposing a, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
guard: {T}, 
top: Top, 
fset-constrained-ac-lub: lub(P;ac1;ac2), 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
free-dist-lattice-with-constraints_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-1_wf, 
bdd-distributive-lattice_wf, 
or_wf, 
fset_wf, 
deq_wf, 
free-dlwc-1, 
free-dlwc-join, 
free-dlwc-point, 
member-fset-minimals, 
deq-fset_wf, 
f-proper-subset-dec_wf, 
fset-union_wf, 
empty-fset_wf, 
member-fset-union, 
squash_wf, 
true_wf, 
lattice-join-1, 
bdd-distributive-lattice-subtype-bdd-lattice, 
iff_weakening_equal, 
lattice-1-join
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
hypothesis, 
instantiate, 
productEquality, 
universeEquality, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}Cs:T  {}\mrightarrow{}  fset(fset(T)).
\mforall{}x,y:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))
Date html generated:
2017_10_05-AM-00_37_08
Last ObjectModification:
2017_07_28-AM-09_15_23
Theory : lattices
Home
Index