Nuprl Lemma : member-fset-minimals
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[a:T].
  uiff(a ∈ fset-minimals(x,y.less[x;y]; s);a ∈ s ∧ fset-all(s;y.¬bless[y;a]))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
fset-all: fset-all(s;x.P[x]), 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
bnot: ¬bb, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
fset-minimals: fset-minimals(x,y.less[x; y]; s), 
guard: {T}, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
fset-all: fset-all(s;x.P[x]), 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
fset-member_witness, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
and_wf, 
fset-member_wf, 
fset-all_wf, 
assert-fset-minimal, 
assert_wf, 
fset-minimal_wf, 
uiff_wf, 
iff_weakening_uiff, 
guard_wf, 
member-fset-filter, 
fset-minimals_wf, 
fset_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
independent_pairEquality, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
independent_functionElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
addLevel, 
independent_isectElimination, 
cumulativity, 
functionEquality, 
universeEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[a:T].
    uiff(a  \mmember{}  fset-minimals(x,y.less[x;y];  s);a  \mmember{}  s  \mwedge{}  fset-all(s;y.\mneg{}\msubb{}less[y;a]))
Date html generated:
2016_05_14-PM-03_47_37
Last ObjectModification:
2015_12_26-PM-06_36_34
Theory : finite!sets
Home
Index