Nuprl Lemma : free-vs-dim-1-ext

S:Type. (S  (∀K:CRng. free-vs(K;S) ≅ one-dim-vs(K) supposing ∀x,y:S.  (x y ∈ S)))


Proof




Definitions occuring in Statement :  free-vs: free-vs(K;S) vs-iso: A ≅ B one-dim-vs: one-dim-vs(K) uimplies: supposing a all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  member: t ∈ T one-dim-vs: one-dim-vs(K) mk-vs: mk-vs record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y btrue: tt it: bfalse: ff infix_ap: y rng_car: |r| pi1: fst(t) vs-lift: vs-lift(vs;f;fs) vs-bag-add: Σ{f[b] b ∈ bs} vs-0: 0 record-select: r.x vs-add: y vs-mul: x free-vs: free-vs(K;S) formal-sum-mul: x bag-map: bag-map(f;bs) map: map(f;as) list_ind: list_ind cons: [a b] nil: [] bottom: formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] and: P ∧ Q basic-formal-sum: basic-formal-sum(K;S) bag: bag(T) list: List colist: colist(T) corec: corec(T.F[T]) nat: le: A ≤ B not: ¬A implies:  Q less_than': less_than'(a;b) true: True false: False primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) top: Top subtract: m b-union: A ⋃ B tunion: x:A.B[x] bool: 𝔹 unit: Unit pi2: snd(t) has-value: (a)↓ colength: colength(L) permutation: permutation(T;L1;L2) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T length: ||as|| inject: Inj(A;B;f) all: x:A. B[x] permute_list: (L f) mklist: mklist(n;f) append: as bs select: L[n] bfs-equiv: bfs-equiv(K;S;fs1;fs2) least-equiv: least-equiv(A;R) transitive-reflexive-closure: R^* or: P ∨ Q transitive-closure: TC(R) bfs-reduce: bfs-reduce(K;S;as;bs) bag-append: as bs zero-bfs: ss rel_path: rel_path(A;L;x;y) empty-bag: {} formal-sum-add: y free-vs-inc: <s> single-bag: {x} rng_plus: +r rng_times: * free-vs-dim-1 free-vs-unique vs-iso_inversion unique-one-dim-vs-map free-vs-property
Lemmas referenced :  free-vs-dim-1 free-vs-unique vs-iso_inversion unique-one-dim-vs-map free-vs-property
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}S:Type.  (S  {}\mRightarrow{}  (\mforall{}K:CRng.  free-vs(K;S)  \mcong{}  one-dim-vs(K)  supposing  \mforall{}x,y:S.    (x  =  y)))



Date html generated: 2019_10_31-AM-06_30_49
Last ObjectModification: 2019_08_02-PM-04_37_53

Theory : linear!algebra


Home Index