Step
*
1
1
1
2
2
1
of Lemma
vs-bag-add-mul
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. k : |K|
6. u : S
7. v : S List
8. k * Σ(b∈v). f[b] = Σ(b∈v). k * f[b] ∈ Point(vs)
⊢ k * Σ(b∈{u}). f[b] + Σ(b∈v). f[b] = Σ(b∈{u}). k * f[b] + Σ(b∈v). k * f[b] ∈ Point(vs)
BY
{ ((RWW "vs-mul-linear -1 bag-summation-single" 0 THENA (Auto THEN D 0 THEN Reduce 0 THEN Auto))
THEN Try ((D 0 THEN Reduce 0 THEN Complete (Auto)))
) }
1
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S ⟶ Point(vs)
5. k : |K|
6. u : S
7. v : S List
8. k * Σ(b∈v). f[b] = Σ(b∈v). k * f[b] ∈ Point(vs)
⊢ k * f[u] + Σ(b∈v). k * f[b] = k * f[u] + Σ(b∈v). k * f[b] ∈ Point(vs)
Latex:
Latex:
1. K : Rng
2. vs : VectorSpace(K)
3. S : Type
4. f : S {}\mrightarrow{} Point(vs)
5. k : |K|
6. u : S
7. v : S List
8. k * \mSigma{}(b\mmember{}v). f[b] = \mSigma{}(b\mmember{}v). k * f[b]
\mvdash{} k * \mSigma{}(b\mmember{}\{u\}). f[b] + \mSigma{}(b\mmember{}v). f[b] = \mSigma{}(b\mmember{}\{u\}). k * f[b] + \mSigma{}(b\mmember{}v). k * f[b]
By
Latex:
((RWW "vs-mul-linear -1 bag-summation-single" 0 THENA (Auto THEN D 0 THEN Reduce 0 THEN Auto))
THEN Try ((D 0 THEN Reduce 0 THEN Complete (Auto)))
)
Home
Index