Step
*
1
1
2
1
1
1
of Lemma
0-dim-complex-polyhedron
1. k : ℕ
2. u : ℕk ⟶ ℚ
3. a : ℕk ⟶ ℚ
⊢ (¬(u = a ∈ (ℕk ⟶ ℚ)))
⇒ λj.rat2real(u j) ≠ λj.rat2real(a j)
BY
{ ((RWO "real-vec-sep-iff-rneq" 0 THENA Auto) THEN Reduce 0 THEN (RWO "rneq-rat2real" 0 THENA Auto)) }
1
1. k : ℕ
2. u : ℕk ⟶ ℚ
3. a : ℕk ⟶ ℚ
⊢ (¬(u = a ∈ (ℕk ⟶ ℚ)))
⇒ (∃i:ℕk. (¬((u i) = (a i) ∈ ℚ)))
Latex:
Latex:
1. k : \mBbbN{}
2. u : \mBbbN{}k {}\mrightarrow{} \mBbbQ{}
3. a : \mBbbN{}k {}\mrightarrow{} \mBbbQ{}
\mvdash{} (\mneg{}(u = a)) {}\mRightarrow{} \mlambda{}j.rat2real(u j) \mneq{} \mlambda{}j.rat2real(a j)
By
Latex:
((RWO "real-vec-sep-iff-rneq" 0 THENA Auto) THEN Reduce 0 THEN (RWO "rneq-rat2real" 0 THENA Auto))
Home
Index