Nuprl Lemma : 0-dim-complex-polyhedron
∀k:ℕ. ∀K:0-dim-complex. ∀x:|K|.  ∃i:ℕ||K||. req-vec(k;x;λj.rat2real(fst((K[i] j))))
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
req-vec: req-vec(n;x;y)
, 
rat2real: rat2real(q)
, 
select: L[n]
, 
length: ||as||
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
inject: Inj(A;B;f)
, 
cons: [a / b]
, 
nat_plus: ℕ+
, 
sq_stable: SqStable(P)
, 
real: ℝ
, 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
real-vec-sep: a ≠ b
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
subtract: n - m
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
l_member: (x ∈ l)
, 
stable: Stable{P}
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
less_than': less_than'(a;b)
, 
real-vec: ℝ^n
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
l_all: (∀x∈L.P[x])
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
req-vec: req-vec(n;x;y)
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
nat: ℕ
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
rational-cube-complex: n-dim-complex
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
stable-union: Error :stable-union, 
rat-cube-complex-polyhedron: |K|
, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf, 
subtype_rel_list, 
select-map, 
map-length, 
iff_weakening_equal, 
istype-universe, 
true_wf, 
squash_wf, 
rat-cube-dimension_wf, 
equal-wf-base, 
l_all_iff, 
l_member_wf, 
no_repeats_map, 
sq_stable__no_repeats, 
map_wf, 
stable_req, 
stable__all, 
length_wf_nat, 
add_nat_plus, 
zero-add, 
add-member-int_seg2, 
select-cons-tl, 
non_neg_length, 
not-real-vec-sep-refl, 
req-vec_weakening, 
req-vec_inversion, 
real-vec-sep_functionality, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-is-int-iff, 
nat_plus_properties, 
real-vec-dist_wf, 
int-to-real_wf, 
sq_stable__less_than, 
length_of_cons_lemma, 
real-vec-sep-cases, 
real-vec-sep_wf, 
int_seg-case, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
subtype_base_sq, 
le-add-cancel2, 
add-commutes, 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
add-associates, 
condition-implies-le, 
not-le-2, 
int_seg_subtype, 
subtype_rel_function, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__equal_rationals, 
primrec-wf2, 
subtract_wf, 
real-vec-sep-iff-rneq, 
rneq-rat2real, 
not_wf, 
rneq_wf, 
iff_weakening_uiff, 
istype-less_than, 
istype-false, 
int_seg_subtype_nat, 
cons_wf, 
no_repeats_cons, 
nil_wf, 
istype-base, 
stuck-spread, 
length_of_nil_lemma, 
list_wf, 
exists_wf, 
stable_wf, 
no_repeats_wf, 
rationals_wf, 
list_induction, 
istype-nat, 
rational-cube-complex_wf, 
rat-cube-complex-polyhedron_wf, 
req-vec_wf, 
req_wf, 
rleq_antisymmetry, 
equal_wf, 
rat2real_wf, 
rleq_wf, 
rational-interval_wf, 
subtype_rel_self, 
rat-cube-dimension-zero, 
int_formula_prop_less_lemma, 
intformless_wf, 
istype-le, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
in-rat-cube_wf, 
rational-cube_wf, 
length_wf, 
int_seg_wf
Rules used in proof : 
universeEquality, 
baseApply, 
pointwiseFunctionality, 
imageMemberEquality, 
intEquality, 
cumulativity, 
instantiate, 
multiplyEquality, 
minusEquality, 
addEquality, 
functionExtensionality, 
productEquality, 
setIsType, 
functionIsTypeImplies, 
isect_memberFormation_alt, 
baseClosed, 
closedConclusion, 
equalityIstype, 
independent_pairEquality, 
applyLambdaEquality, 
hyp_replacement, 
promote_hyp, 
inhabitedIsType, 
functionEquality, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
dependent_functionElimination, 
imageElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
universeIsType, 
productIsType, 
functionIsType, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
hypothesis, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:0-dim-complex.  \mforall{}x:|K|.    \mexists{}i:\mBbbN{}||K||.  req-vec(k;x;\mlambda{}j.rat2real(fst((K[i]  j))))
Date html generated:
2019_10_30-AM-10_13_19
Last ObjectModification:
2019_10_27-PM-02_51_55
Theory : real!vectors
Home
Index