Nuprl Lemma : 0-dim-complex-polyhedron

k:ℕ. ∀K:0-dim-complex. ∀x:|K|.  ∃i:ℕ||K||. req-vec(k;x;λj.rat2real(fst((K[i] j))))


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| req-vec: req-vec(n;x;y) rat2real: rat2real(q) select: L[n] length: ||as|| int_seg: {i..j-} nat: pi1: fst(t) all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  inject: Inj(A;B;f) cons: [a b] nat_plus: + sq_stable: SqStable(P) real: sq_exists: x:A [B[x]] rless: x < y real-vec-sep: a ≠ b sq_type: SQType(T) guard: {T} true: True subtract: m iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B l_member: (x ∈ l) stable: Stable{P} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] it: nil: [] select: L[n] so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) real-vec: ^n pi2: snd(t) pi1: fst(t) rational-interval: Interval rational-cube: Cube(k) subtype_rel: A ⊆B uiff: uiff(P;Q) l_all: (∀x∈L.P[x]) in-rat-cube: in-rat-cube(k;p;c) req-vec: req-vec(n;x;y) prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} rational-cube-complex: n-dim-complex uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] false: False implies:  Q not: ¬A stable-union: Error :stable-union,  rat-cube-complex-polyhedron: |K| all: x:A. B[x]
Lemmas referenced :  top_wf subtype_rel_list select-map map-length iff_weakening_equal istype-universe true_wf squash_wf rat-cube-dimension_wf equal-wf-base l_all_iff l_member_wf no_repeats_map sq_stable__no_repeats map_wf stable_req stable__all length_wf_nat add_nat_plus zero-add add-member-int_seg2 select-cons-tl non_neg_length not-real-vec-sep-refl req-vec_weakening req-vec_inversion real-vec-sep_functionality false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff nat_plus_properties real-vec-dist_wf int-to-real_wf sq_stable__less_than length_of_cons_lemma real-vec-sep-cases real-vec-sep_wf int_seg-case int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_subtype_base lelt_wf set_subtype_base subtype_base_sq le-add-cancel2 add-commutes add-zero zero-mul add-mul-special minus-one-mul-top add-swap minus-one-mul minus-add add-associates condition-implies-le not-le-2 int_seg_subtype subtype_rel_function int_term_value_subtract_lemma itermSubtract_wf decidable__equal_rationals primrec-wf2 subtract_wf real-vec-sep-iff-rneq rneq-rat2real not_wf rneq_wf iff_weakening_uiff istype-less_than istype-false int_seg_subtype_nat cons_wf no_repeats_cons nil_wf istype-base stuck-spread length_of_nil_lemma list_wf exists_wf stable_wf no_repeats_wf rationals_wf list_induction istype-nat rational-cube-complex_wf rat-cube-complex-polyhedron_wf req-vec_wf req_wf rleq_antisymmetry equal_wf rat2real_wf rleq_wf rational-interval_wf subtype_rel_self rat-cube-dimension-zero int_formula_prop_less_lemma intformless_wf istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf in-rat-cube_wf rational-cube_wf length_wf int_seg_wf
Rules used in proof :  universeEquality baseApply pointwiseFunctionality imageMemberEquality intEquality cumulativity instantiate multiplyEquality minusEquality addEquality functionExtensionality productEquality setIsType functionIsTypeImplies isect_memberFormation_alt baseClosed closedConclusion equalityIstype independent_pairEquality applyLambdaEquality hyp_replacement promote_hyp inhabitedIsType functionEquality applyEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality_alt independent_pairFormation isect_memberEquality_alt int_eqEquality lambdaEquality_alt dependent_pairFormation_alt approximateComputation unionElimination dependent_functionElimination imageElimination productElimination independent_isectElimination because_Cache hypothesisEquality natural_numberEquality isectElimination extract_by_obid introduction universeIsType productIsType functionIsType sqequalRule voidElimination independent_functionElimination hypothesis rename thin setElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}K:0-dim-complex.  \mforall{}x:|K|.    \mexists{}i:\mBbbN{}||K||.  req-vec(k;x;\mlambda{}j.rat2real(fst((K[i]  j))))



Date html generated: 2019_10_30-AM-10_13_19
Last ObjectModification: 2019_10_27-PM-02_51_55

Theory : real!vectors


Home Index