Nuprl Lemma : rneq-rat2real
∀q1,q2:ℚ.  uiff(rat2real(q1) ≠ rat2real(q2);¬(q1 = q2 ∈ ℚ))
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q)
, 
rneq: x ≠ y
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
, 
rationals: ℚ
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rneq: x ≠ y
, 
all: ∀x:A. B[x]
Lemmas referenced : 
qless_irreflexivity, 
qle_weakening_eq_qorder, 
qless_transitivity_2_qorder, 
qless_trichot_qorder, 
rless-rat2real, 
iff_weakening_uiff, 
istype-void, 
qless_wf, 
rat2real_wf, 
rless_wf, 
rationals_wf
Rules used in proof : 
equalitySymmetry, 
rename, 
promote_hyp, 
independent_pairFormation, 
functionIsTypeImplies, 
voidElimination, 
lambdaEquality_alt, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
inlFormation_alt, 
unionElimination, 
independent_isectElimination, 
isect_memberFormation_alt, 
productElimination, 
equalityIstype, 
functionIsType, 
because_Cache, 
unionIsType, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
universeIsType, 
hypothesisEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}q1,q2:\mBbbQ{}.    uiff(rat2real(q1)  \mneq{}  rat2real(q2);\mneg{}(q1  =  q2))
Date html generated:
2019_10_29-AM-09_59_44
Last ObjectModification:
2019_10_27-PM-02_39_55
Theory : reals
Home
Index