Nuprl Lemma : rneq-rat2real

q1,q2:ℚ.  uiff(rat2real(q1) ≠ rat2real(q2);¬(q1 q2 ∈ ℚ))


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) rneq: x ≠ y uiff: uiff(P;Q) all: x:A. B[x] not: ¬A equal: t ∈ T rationals:
Definitions unfolded in proof :  guard: {T} rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) false: False implies:  Q not: ¬A or: P ∨ Q prop: uall: [x:A]. B[x] member: t ∈ T rneq: x ≠ y all: x:A. B[x]
Lemmas referenced :  qless_irreflexivity qle_weakening_eq_qorder qless_transitivity_2_qorder qless_trichot_qorder rless-rat2real iff_weakening_uiff istype-void qless_wf rat2real_wf rless_wf rationals_wf
Rules used in proof :  equalitySymmetry rename promote_hyp independent_pairFormation functionIsTypeImplies voidElimination lambdaEquality_alt inrFormation_alt dependent_functionElimination independent_functionElimination inlFormation_alt unionElimination independent_isectElimination isect_memberFormation_alt productElimination equalityIstype functionIsType because_Cache unionIsType sqequalRule thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut universeIsType hypothesisEquality inhabitedIsType lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}q1,q2:\mBbbQ{}.    uiff(rat2real(q1)  \mneq{}  rat2real(q2);\mneg{}(q1  =  q2))



Date html generated: 2019_10_29-AM-09_59_44
Last ObjectModification: 2019_10_27-PM-02_39_55

Theory : reals


Home Index