Nuprl Lemma : rless-rat2real

q1,q2:ℚ.  uiff(rat2real(q1) < rat2real(q2);q1 < q2)


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) rless: x < y uiff: uiff(P;Q) all: x:A. B[x] qless: r < s rationals:
Definitions unfolded in proof :  rneq: x ≠ y or: P ∨ Q decidable: Dec(P) guard: {T} top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) false: False sq_exists: x:A [B[x]] rless: x < y nequal: a ≠ b ∈  int_nzero: -o rev_implies:  Q uiff: uiff(P;Q) bfalse: ff ifthenelse: if then else fi  rat2real: rat2real(q) mk-rational: mk-rational(a;b) uimplies: supposing a prop: and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B implies:  Q not: ¬A cand: c∧ B nat_plus: + uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  int-rdiv-req int-rdiv_wf rless_functionality member-less_than int-to-real_wf rless-int rdiv_wf rless-int-fractions int_term_value_mul_lemma itermMultiply_wf mk-rational-qdiv qless_witness istype-less_than int_formula_prop_not_lemma intformnot_wf decidable__lt qless-mk-rational less_than_wf nequal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat mk-rational_wf qless_wf qdiv_wf rat2real_wf rless_wf uiff_wf istype-assert assert-qeq int_subtype_base rationals_wf equal-wf-base int-subtype-rationals qeq_wf2 assert_wf iff_weakening_uiff nat_plus_properties q-elim
Rules used in proof :  inrFormation_alt promote_hyp unionElimination multiplyEquality intEquality sqequalBase equalityIstype independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality lambdaEquality_alt dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt isect_memberFormation_alt universeIsType inhabitedIsType independent_isectElimination applyLambdaEquality equalitySymmetry hyp_replacement baseClosed because_Cache natural_numberEquality sqequalRule applyEquality independent_functionElimination rename setElimination hypothesis isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}q1,q2:\mBbbQ{}.    uiff(rat2real(q1)  <  rat2real(q2);q1  <  q2)



Date html generated: 2019_10_29-AM-09_59_33
Last ObjectModification: 2019_10_17-AM-11_38_57

Theory : reals


Home Index