Nuprl Lemma : in-0-dim-cube
∀[k:ℕ]. ∀[c:ℚCube(k)].  ∀[p:ℝ^k]. uiff(in-rat-cube(k;p;c);req-vec(k;p;λj.rat2real(fst((c j))))) supposing dim(c) = 0 ∈ ℤ
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
rat2real: rat2real(q)
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
, 
rat-cube-dimension: dim(c)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
top: Top
, 
not: ¬A
, 
false: False
, 
req_int_terms: t1 ≡ t2
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
true: True
, 
lelt: i ≤ j < k
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
, 
pi2: snd(t)
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
req-vec: req-vec(n;x;y)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
so_apply: x[s]
, 
nat: ℕ
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rational-cube: ℚCube(k)
, 
real-vec: ℝ^n
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_fake_le_antisymmetry, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
istype-void, 
real_term_value_sub_lemma, 
int-to-real_wf, 
real_polynomial_null, 
iff_weakening_equal, 
subtype_rel_self, 
rationals_wf, 
real_wf, 
true_wf, 
squash_wf, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermSubtract_wf, 
rleq_weakening, 
req_weakening, 
rleq_functionality, 
rleq_wf, 
rat-cube-dimension-zero, 
sq_stable__req, 
req_wf, 
sq_stable__all, 
istype-nat, 
rational-cube_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
le_witness_for_triv, 
req_witness, 
sq_stable__in-rat-cube, 
sq_stable__uiff, 
int_seg_wf, 
rat2real_wf, 
req-vec_wf, 
in-rat-cube_wf, 
uiff_wf, 
real-vec_wf, 
sq_stable__uall
Rules used in proof : 
voidElimination, 
int_eqEquality, 
approximateComputation, 
promote_hyp, 
universeEquality, 
instantiate, 
productIsType, 
functionIsType, 
independent_pairFormation, 
sqequalBase, 
addEquality, 
minusEquality, 
intEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_isectElimination, 
isectIsTypeImplies, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
productElimination, 
lambdaFormation_alt, 
inhabitedIsType, 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p:\mBbbR{}\^{}k].  uiff(in-rat-cube(k;p;c);req-vec(k;p;\mlambda{}j.rat2real(fst((c  j)))))  supposing  dim(c)  =  0
Date html generated:
2019_10_30-AM-10_12_53
Last ObjectModification:
2019_10_29-PM-01_47_57
Theory : real!vectors
Home
Index