Nuprl Lemma : in-0-dim-cube

[k:ℕ]. ∀[c:ℚCube(k)].  ∀[p:ℝ^k]. uiff(in-rat-cube(k;p;c);req-vec(k;p;λj.rat2real(fst((c j))))) supposing dim(c) 0 ∈ ℤ


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) req-vec: req-vec(n;x;y) real-vec: ^n rat2real: rat2real(q) nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) apply: a lambda: λx.A[x] natural_number: $n int: equal: t ∈ T rat-cube-dimension: dim(c) rational-cube: Cube(k)
Definitions unfolded in proof :  top: Top not: ¬A false: False req_int_terms: t1 ≡ t2 rev_implies:  Q iff: ⇐⇒ Q guard: {T} true: True lelt: i ≤ j < k rev_uimplies: rev_uimplies(P;Q) prop: pi2: snd(t) int_seg: {i..j-} subtype_rel: A ⊆B squash: T le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y in-rat-cube: in-rat-cube(k;p;c) req-vec: req-vec(n;x;y) and: P ∧ Q uiff: uiff(P;Q) sq_stable: SqStable(P) so_apply: x[s] nat: pi1: fst(t) rational-interval: Interval implies:  Q all: x:A. B[x] rational-cube: Cube(k) real-vec: ^n so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  req_fake_le_antisymmetry real_term_value_const_lemma real_term_value_var_lemma istype-void real_term_value_sub_lemma int-to-real_wf real_polynomial_null iff_weakening_equal subtype_rel_self rationals_wf real_wf true_wf squash_wf req-iff-rsub-is-0 itermVar_wf itermSubtract_wf rleq_weakening req_weakening rleq_functionality rleq_wf rat-cube-dimension-zero sq_stable__req req_wf sq_stable__all istype-nat rational-cube_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf istype-int le_witness_for_triv req_witness sq_stable__in-rat-cube sq_stable__uiff int_seg_wf rat2real_wf req-vec_wf in-rat-cube_wf uiff_wf real-vec_wf sq_stable__uall
Rules used in proof :  voidElimination int_eqEquality approximateComputation promote_hyp universeEquality instantiate productIsType functionIsType independent_pairFormation sqequalBase addEquality minusEquality intEquality imageElimination baseClosed imageMemberEquality independent_isectElimination isectIsTypeImplies functionIsTypeImplies isect_memberEquality_alt independent_pairEquality rename setElimination natural_numberEquality universeIsType independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity equalityIstype productElimination lambdaFormation_alt inhabitedIsType applyEquality because_Cache lambdaEquality_alt sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p:\mBbbR{}\^{}k].  uiff(in-rat-cube(k;p;c);req-vec(k;p;\mlambda{}j.rat2real(fst((c  j)))))  supposing  dim(c)  =  0



Date html generated: 2019_10_30-AM-10_12_53
Last ObjectModification: 2019_10_29-PM-01_47_57

Theory : real!vectors


Home Index