Nuprl Lemma : rational-vec_wf

[n:ℕ]. ∀[x:ℝ^n].  (rational-vec(n;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  rational-vec: rational-vec(n;x) real-vec: ^n nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rational-vec: rational-vec(n;x) nat: so_lambda: λ2x.t[x] real-vec: ^n nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf exists_wf nat_plus_wf req_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real-vec_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality_alt intEquality applyEquality hypothesisEquality independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (rational-vec(n;x)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_30-AM-10_14_43
Last ObjectModification: 2019_06_28-PM-01_52_07

Theory : real!vectors


Home Index