Nuprl Lemma : rccp-dist_wf

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[x:ℝ^k].  (dist(x, |K|) ∈ ℝ)


Proof




Definitions occuring in Statement :  rccp-dist: dist(x, |K|) real-vec: ^n real: length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B uimplies: supposing a rational-cube-complex: n-dim-complex rccp-dist: dist(x, |K|) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube-complex_wf rational-cube_wf length_wf istype-less_than rccp-compact_wf rat-cube-complex-polyhedron_wf rn-prod-metric_wf real-vec_wf compact-dist_wf
Rules used in proof :  setIsType inhabitedIsType isectIsTypeImplies isect_memberEquality_alt equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality dependent_set_memberEquality_alt universeIsType lambdaEquality_alt independent_isectElimination because_Cache hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid sqequalRule rename thin setElimination cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[x:\mBbbR{}\^{}k].    (dist(x,  |K|)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_31-AM-06_04_14
Last ObjectModification: 2019_10_30-PM-04_20_05

Theory : real!vectors


Home Index