Nuprl Lemma : simplex-metric_wf
∀[n:ℤ]. (simplex-metric(n) ∈ metric(Δ(n)))
Proof
Definitions occuring in Statement : 
simplex-metric: simplex-metric(n), 
std-simplex: Δ(n), 
metric: metric(X), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
top: Top, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
simplex-metric: simplex-metric(n), 
nat: ℕ, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
std-simplex: Δ(n)
Lemmas referenced : 
decidable__lt, 
istype-void, 
metric-on-void, 
std-simplex_wf, 
std-simplex-void, 
rn-metric_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
metric-on-subtype, 
real-vec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
isect_memberEquality_alt, 
voidElimination, 
applyEquality, 
isectElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality_alt, 
addEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
universeIsType, 
setElimination, 
rename
Latex:
\mforall{}[n:\mBbbZ{}].  (simplex-metric(n)  \mmember{}  metric(\mDelta{}(n)))
Date html generated:
2019_10_30-AM-11_30_38
Last ObjectModification:
2019_08_02-PM-02_20_24
Theory : real!vectors
Home
Index