Nuprl Lemma : blended-real_wf

[k:ℕ+]. ∀[x,y:ℝ].  blended-real(k;x;y) ∈ ℝ supposing |x y| ≤ (r1/r(k))


Proof




Definitions occuring in Statement :  blended-real: blended-real(k;x;y) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a blended-real: blended-real(k;x;y) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: real: implies:  Q rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  accelerate_wf less_than_wf blend-seq_wf blend-close-reals regular-int-seq_wf nat_plus_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality hypothesisEquality baseClosed hypothesis setElimination rename independent_functionElimination functionExtensionality applyEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache independent_isectElimination inrFormation dependent_functionElimination productElimination unionElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].    blended-real(k;x;y)  \mmember{}  \mBbbR{}  supposing  |x  -  y|  \mleq{}  (r1/r(k))



Date html generated: 2017_10_03-AM-10_08_42
Last ObjectModification: 2017_07_05-PM-04_12_50

Theory : reals


Home Index