Nuprl Lemma : cantor-interval-converges-ext
∀a,b:ℝ.  ∀f:ℕ ⟶ 𝔹. fst(cantor-interval(a;b;f;n))↓ as n→∞ supposing a ≤ b
Proof
Definitions occuring in Statement : 
cantor-interval: cantor-interval(a;b;f;n)
, 
converges: x[n]↓ as n→∞
, 
rleq: x ≤ y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
accelerate: accelerate(k;f)
, 
cantor-interval-converges, 
converges-iff-cauchy, 
cantor-interval-cauchy-ext, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
cantor-interval-converges, 
lifting-strict-spread, 
istype-void, 
strict4-apply, 
strict4-divide, 
converges-iff-cauchy, 
cantor-interval-cauchy-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  fst(cantor-interval(a;b;f;n))\mdownarrow{}  as  n\mrightarrow{}\minfty{}  supposing  a  \mleq{}  b
Date html generated:
2019_10_30-AM-07_39_19
Last ObjectModification:
2019_04_02-AM-10_55_46
Theory : reals
Home
Index