Nuprl Lemma : cantor-to-interval-onto-proper

a,b:ℝ.  ∀x:ℝ((a ≤ x)  (x ≤ b)  (∃f:ℕ ⟶ 𝔹(cantor-to-interval(a;b;f) x))) supposing a < b


Proof




Definitions occuring in Statement :  cantor-to-interval: cantor-to-interval(a;b;f) rleq: x ≤ y rless: x < y req: y real: nat: bool: 𝔹 uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a implies:  Q member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat: top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B rless: x < y sq_exists: x:{A| B[x]} real: sq_stable: SqStable(P) squash: T nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) pi1: fst(t) cand: c∧ B cantor-interval: cantor-interval(a;b;f;n) primrec: primrec(n;b;c) pi2: snd(t) int_seg: {i..j-} lelt: i ≤ j < k guard: {T} sq_type: SQType(T) nequal: a ≠ b ∈  true: True iff: ⇐⇒ Q rev_implies:  Q ifthenelse: if then else fi  bfalse: ff less_than: a < b
Lemmas referenced :  cantor-to-interval-onto-lemma i-member_wf rccint_wf cantor-interval_wf int_seg_wf real_wf pi1_wf_top equal_wf pi2_wf bool_wf nat_wf member_rccint_lemma all_wf exists_wf nat_properties sq_stable__less_than nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self subtype_rel_product top_wf set_wf rleq_wf subtype_rel_set rless_wf primrec-wf bfalse_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf sq_stable__i-member int_seg_subtype_nat ge_wf less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq int_subtype_base int_seg_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma primrec-unroll bool_subtype_base squash_wf true_wf eq_int_eq_false subtract-add-cancel equal-wf-base iff_weakening_equal sq_stable__req cantor-to-interval_wf rleq_weakening_rless cantor-to-interval-req req_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination hypothesis promote_hyp rename dependent_pairFormation lambdaEquality isectElimination functionExtensionality applyEquality natural_numberEquality setElimination productEquality productElimination independent_pairEquality isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry independent_functionElimination because_Cache sqequalRule functionEquality setEquality addEquality dependent_set_memberEquality imageMemberEquality baseClosed imageElimination unionElimination int_eqEquality intEquality independent_pairFormation computeAll applyLambdaEquality hyp_replacement intWeakElimination axiomEquality instantiate cumulativity universeEquality baseApply closedConclusion

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}x:\mBbbR{}.  ((a  \mleq{}  x)  {}\mRightarrow{}  (x  \mleq{}  b)  {}\mRightarrow{}  (\mexists{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (cantor-to-interval(a;b;f)  =  x)))  supposing  a  <  b



Date html generated: 2017_10_03-AM-09_55_25
Last ObjectModification: 2017_07_28-AM-08_04_22

Theory : reals


Home Index