Nuprl Lemma : cantor-to-interval-onto-proper
∀a,b:ℝ.  ∀x:ℝ. ((a ≤ x) 
⇒ (x ≤ b) 
⇒ (∃f:ℕ ⟶ 𝔹. (cantor-to-interval(a;b;f) = x))) supposing a < b
Proof
Definitions occuring in Statement : 
cantor-to-interval: cantor-to-interval(a;b;f)
, 
rleq: x ≤ y
, 
rless: x < y
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
pi1: fst(t)
, 
cand: A c∧ B
, 
cantor-interval: cantor-interval(a;b;f;n)
, 
primrec: primrec(n;b;c)
, 
pi2: snd(t)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
less_than: a < b
Lemmas referenced : 
cantor-to-interval-onto-lemma, 
i-member_wf, 
rccint_wf, 
cantor-interval_wf, 
int_seg_wf, 
real_wf, 
pi1_wf_top, 
equal_wf, 
pi2_wf, 
bool_wf, 
nat_wf, 
member_rccint_lemma, 
all_wf, 
exists_wf, 
nat_properties, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
subtype_rel_product, 
top_wf, 
set_wf, 
rleq_wf, 
subtype_rel_set, 
rless_wf, 
primrec-wf, 
bfalse_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
sq_stable__i-member, 
int_seg_subtype_nat, 
ge_wf, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
primrec-unroll, 
bool_subtype_base, 
squash_wf, 
true_wf, 
eq_int_eq_false, 
subtract-add-cancel, 
equal-wf-base, 
iff_weakening_equal, 
sq_stable__req, 
cantor-to-interval_wf, 
rleq_weakening_rless, 
cantor-to-interval-req, 
req_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
promote_hyp, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
isectElimination, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
productEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
because_Cache, 
sqequalRule, 
functionEquality, 
setEquality, 
addEquality, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
applyLambdaEquality, 
hyp_replacement, 
intWeakElimination, 
axiomEquality, 
instantiate, 
cumulativity, 
universeEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}x:\mBbbR{}.  ((a  \mleq{}  x)  {}\mRightarrow{}  (x  \mleq{}  b)  {}\mRightarrow{}  (\mexists{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  (cantor-to-interval(a;b;f)  =  x)))  supposing  a  <  b
Date html generated:
2017_10_03-AM-09_55_25
Last ObjectModification:
2017_07_28-AM-08_04_22
Theory : reals
Home
Index