Step
*
1
2
2
1
of Lemma
converges-implies-bounded
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - y| ≤ (r1/r(k)))))})
4. N : ℤ
5. 0 < N
6. bounded-sequence(n.x[n + (N - 1)])
⇒ bounded-sequence(n.x[n])
7. b : ℝ
8. ∀n:ℕ. (|x[n + N]| ≤ b)
9. n : ℕ
⊢ |x[n + (N - 1)]| ≤ rmax(b;|x[N - 1]|)
BY
{ CaseNat 0 `n' }
1
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - y| ≤ (r1/r(k)))))})
4. N : ℤ
5. 0 < N
6. bounded-sequence(n.x[n + (N - 1)])
⇒ bounded-sequence(n.x[n])
7. b : ℝ
8. ∀n:ℕ. (|x[n + N]| ≤ b)
9. n : ℕ
10. n = 0 ∈ ℤ
⊢ |x[0 + (N - 1)]| ≤ rmax(b;|x[N - 1]|)
2
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. ∀k:ℕ+. (∃N:{ℕ| (∀n:ℕ. ((N ≤ n)
⇒ (|x[n] - y| ≤ (r1/r(k)))))})
4. N : ℤ
5. 0 < N
6. bounded-sequence(n.x[n + (N - 1)])
⇒ bounded-sequence(n.x[n])
7. b : ℝ
8. ∀n:ℕ. (|x[n + N]| ≤ b)
9. n : ℕ
10. ¬(n = 0 ∈ ℤ)
⊢ |x[n + (N - 1)]| ≤ rmax(b;|x[N - 1]|)
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. y : \mBbbR{}
3. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\{\mBbbN{}| (\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (|x[n] - y| \mleq{} (r1/r(k)))))\})
4. N : \mBbbZ{}
5. 0 < N
6. bounded-sequence(n.x[n + (N - 1)]) {}\mRightarrow{} bounded-sequence(n.x[n])
7. b : \mBbbR{}
8. \mforall{}n:\mBbbN{}. (|x[n + N]| \mleq{} b)
9. n : \mBbbN{}
\mvdash{} |x[n + (N - 1)]| \mleq{} rmax(b;|x[N - 1]|)
By
Latex:
CaseNat 0 `n'
Home
Index