Nuprl Lemma : geometric-simplex_wf
∀[k,n:ℕ].  (geometric-simplex(k;n) ∈ Type)
Proof
Definitions occuring in Statement : 
geometric-simplex: geometric-simplex(k;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geometric-simplex: geometric-simplex(k;n)
, 
and: P ∧ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
Lemmas referenced : 
list_wf, 
real-vec_wf, 
equal-wf-base, 
is-simplex_wf, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
inhabitedIsType, 
isectIsTypeImplies
Latex:
\mforall{}[k,n:\mBbbN{}].    (geometric-simplex(k;n)  \mmember{}  Type)
Date html generated:
2019_10_30-AM-08_47_56
Last ObjectModification:
2019_09_18-PM-02_06_12
Theory : reals
Home
Index