Nuprl Lemma : infn-nonneg

[I:{I:Interval| icompact(I)} ]
  ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))} .
    r0 ≤ (infn(n;I) f) supposing ∀a:I^n. (r0 ≤ (f a))


Proof




Definitions occuring in Statement :  infn: infn(n;I) interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval rleq: x ≤ y req: y int-to-real: r(n) real: nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q prop: implies:  Q interval-vec: I^n
Lemmas referenced :  rleq-infn le_witness_for_triv interval-vec_wf rleq_wf int-to-real_wf real_wf req-vec_wf req_wf istype-nat interval_wf icompact_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache independent_isectElimination hypothesis sqequalRule lambdaEquality_alt productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType functionIsType universeIsType setElimination rename natural_numberEquality applyEquality setIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ]
    \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}  .
        r0  \mleq{}  (infn(n;I)  f)  supposing  \mforall{}a:I\^{}n.  (r0  \mleq{}  (f  a))



Date html generated: 2019_10_30-AM-08_25_47
Last ObjectModification: 2019_05_28-PM-05_29_31

Theory : reals


Home Index