Nuprl Lemma : infn-nonneg
∀[I:{I:Interval| icompact(I)} ]
  ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b) 
⇒ ((f a) = (f b)))} .
    r0 ≤ (infn(n;I) f) supposing ∀a:I^n. (r0 ≤ (f a))
Proof
Definitions occuring in Statement : 
infn: infn(n;I)
, 
interval-vec: I^n
, 
req-vec: req-vec(n;x;y)
, 
icompact: icompact(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
interval-vec: I^n
Lemmas referenced : 
rleq-infn, 
le_witness_for_triv, 
interval-vec_wf, 
rleq_wf, 
int-to-real_wf, 
real_wf, 
req-vec_wf, 
req_wf, 
istype-nat, 
interval_wf, 
icompact_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
universeIsType, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
setIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ]
    \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}  .
        r0  \mleq{}  (infn(n;I)  f)  supposing  \mforall{}a:I\^{}n.  (r0  \mleq{}  (f  a))
Date html generated:
2019_10_30-AM-08_25_47
Last ObjectModification:
2019_05_28-PM-05_29_31
Theory : reals
Home
Index