Nuprl Lemma : is-partition-choice_wf

[p:ℝ List]. ∀[x:ℕ||p|| 1 ⟶ ℝ].  (is-partition-choice(p;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  is-partition-choice: is-partition-choice(p;x) real: length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-partition-choice: is-partition-choice(p;x) all: x:A. B[x] top: Top so_lambda: λ2x.t[x] prop: and: P ∧ Q int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A less_than: a < b squash: T uiff: uiff(P;Q) so_apply: x[s]
Lemmas referenced :  list_wf int_term_value_add_lemma itermAdd_wf false_wf int_term_value_subtract_lemma int_formula_prop_less_lemma itermSubtract_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties select_wf rleq_wf real_wf length_wf subtract_wf int_seg_wf all_wf member_rccint_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination natural_numberEquality hypothesisEquality lambdaEquality productEquality because_Cache setElimination rename independent_isectElimination productElimination unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed applyEquality addEquality axiomEquality functionEquality

Latex:
\mforall{}[p:\mBbbR{}  List].  \mforall{}[x:\mBbbN{}||p||  -  1  {}\mrightarrow{}  \mBbbR{}].    (is-partition-choice(p;x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_03_12
Last ObjectModification: 2016_01_17-AM-02_32_47

Theory : reals


Home Index