Nuprl Lemma : mdist-rn-metric-mul

[n:ℕ]. ∀[p:ℝ^n]. ∀[c:ℝ].  (mdist(rn-metric(n);c*p;λi.r0) (|c| mdist(rn-metric(n);p;λi.r0)))


Proof




Definitions occuring in Statement :  rn-metric: rn-metric(n) real-vec-mul: a*X real-vec: ^n mdist: mdist(d;x;y) rabs: |x| req: y rmul: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] rn-metric: rn-metric(n) mdist: mdist(d;x;y) member: t ∈ T real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf real-vec_wf istype-nat real-vec-dist_wf real-vec-mul_wf int-to-real_wf int_seg_wf real-vec-norm_wf rmul_wf rabs_wf real-vec-norm-mul req_functionality real-vec-dist-from-zero rmul_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache lambdaEquality_alt setElimination rename productElimination natural_numberEquality applyEquality independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    (mdist(rn-metric(n);c*p;\mlambda{}i.r0)  =  (|c|  *  mdist(rn-metric(n);p;\mlambda{}i.r0)))



Date html generated: 2019_10_30-AM-08_40_32
Last ObjectModification: 2019_10_02-AM-11_05_06

Theory : reals


Home Index