Step
*
1
2
1
1
1
2
1
of Lemma
metric-weak-Markov
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. ∀z:X. ((¬z ≡ x) ∨ (¬z ≡ y))
7. r : ℝ
8. ∀n:ℕ+. ((mdist(d;x;y) < (r1/r(n))) ∨ (r < mdist(d;x;y)) ∨ (r0 < r))
9. c : ℕ+ ⟶ ℕ3
10. ∀n:ℕ+
((((c n) = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n))))
∧ (((c n) = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y)))
∧ (((c n) = 2 ∈ ℤ)
⇒ (r0 < r)))
11. ∀v:ℕ List. ∀s:ℕ3.
(accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
v
with starting value:
s) ∈ ℕ3)
12. n : ℤ
13. 0 < n
14. zz : ℕ3
15. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n)
with starting value:
0)
= zz
∈ ℕ3
16. yy : ℕ3
17. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n + 1)
with starting value:
0)
= yy
∈ ℕ3
⊢ ((((zz = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n)))) ∧ ((zz = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y))) ∧ ((zz = 2 ∈ ℤ)
⇒ (r0 < r)))
∧ ((zz = 1 ∈ ℤ)
⇒ (yy = 1 ∈ ℤ))
∧ ((zz = 2 ∈ ℤ)
⇒ (yy = 2 ∈ ℤ)))
⇒ ((((if 0 <z zz then zz else c (n + 1) fi = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n + 1))))
∧ ((if 0 <z zz then zz else c (n + 1) fi = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y)))
∧ ((if 0 <z zz then zz else c (n + 1) fi = 2 ∈ ℤ)
⇒ (r0 < r)))
∧ ((if 0 <z zz then zz else c (n + 1) fi = 1 ∈ ℤ)
⇒ (if 0 <z yy then yy else c ((n + 1) + 1) fi = 1 ∈ ℤ))
∧ ((if 0 <z zz then zz else c (n + 1) fi = 2 ∈ ℤ)
⇒ (if 0 <z yy then yy else c ((n + 1) + 1) fi = 2 ∈ ℤ)))
BY
{ ((D 0 THENA Auto) THEN AutoSplit) }
1
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. ∀z:X. ((¬z ≡ x) ∨ (¬z ≡ y))
7. r : ℝ
8. ∀n:ℕ+. ((mdist(d;x;y) < (r1/r(n))) ∨ (r < mdist(d;x;y)) ∨ (r0 < r))
9. c : ℕ+ ⟶ ℕ3
10. ∀n:ℕ+
((((c n) = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n))))
∧ (((c n) = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y)))
∧ (((c n) = 2 ∈ ℤ)
⇒ (r0 < r)))
11. ∀v:ℕ List. ∀s:ℕ3.
(accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
v
with starting value:
s) ∈ ℕ3)
12. n : ℤ
13. 0 < n
14. zz : ℕ3
15. ¬0 < zz
16. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n)
with starting value:
0)
= zz
∈ ℕ3
17. yy : ℕ3
18. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n + 1)
with starting value:
0)
= yy
∈ ℕ3
19. (((zz = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n)))) ∧ ((zz = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y))) ∧ ((zz = 2 ∈ ℤ)
⇒ (r0 < r)))
∧ ((zz = 1 ∈ ℤ)
⇒ (yy = 1 ∈ ℤ))
∧ ((zz = 2 ∈ ℤ)
⇒ (yy = 2 ∈ ℤ))
⊢ ((((c (n + 1)) = 0 ∈ ℤ)
⇒ (mdist(d;x;y) < (r1/r(n + 1))))
∧ (((c (n + 1)) = 1 ∈ ℤ)
⇒ (r < mdist(d;x;y)))
∧ (((c (n + 1)) = 2 ∈ ℤ)
⇒ (r0 < r)))
∧ (((c (n + 1)) = 1 ∈ ℤ)
⇒ (if 0 <z yy then yy else c ((n + 1) + 1) fi = 1 ∈ ℤ))
∧ (((c (n + 1)) = 2 ∈ ℤ)
⇒ (if 0 <z yy then yy else c ((n + 1) + 1) fi = 2 ∈ ℤ))
Latex:
Latex:
1. [X] : Type
2. d : metric(X)
3. mcomplete(X with d)
4. x : X
5. y : X
6. \mforall{}z:X. ((\mneg{}z \mequiv{} x) \mvee{} (\mneg{}z \mequiv{} y))
7. r : \mBbbR{}
8. \mforall{}n:\mBbbN{}\msupplus{}. ((mdist(d;x;y) < (r1/r(n))) \mvee{} (r < mdist(d;x;y)) \mvee{} (r0 < r))
9. c : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbN{}3
10. \mforall{}n:\mBbbN{}\msupplus{}
((((c n) = 0) {}\mRightarrow{} (mdist(d;x;y) < (r1/r(n))))
\mwedge{} (((c n) = 1) {}\mRightarrow{} (r < mdist(d;x;y)))
\mwedge{} (((c n) = 2) {}\mRightarrow{} (r0 < r)))
11. \mforall{}v:\mBbbN{} List. \mforall{}s:\mBbbN{}3.
(accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
v
with starting value:
s) \mmember{} \mBbbN{}3)
12. n : \mBbbZ{}
13. 0 < n
14. zz : \mBbbN{}3
15. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n)
with starting value:
0)
= zz
16. yy : \mBbbN{}3
17. accumulate (with value u and list item k):
if 0 <z u then u else c (k + 1) fi
over list:
upto(n + 1)
with starting value:
0)
= yy
\mvdash{} ((((zz = 0) {}\mRightarrow{} (mdist(d;x;y) < (r1/r(n))))
\mwedge{} ((zz = 1) {}\mRightarrow{} (r < mdist(d;x;y)))
\mwedge{} ((zz = 2) {}\mRightarrow{} (r0 < r)))
\mwedge{} ((zz = 1) {}\mRightarrow{} (yy = 1))
\mwedge{} ((zz = 2) {}\mRightarrow{} (yy = 2)))
{}\mRightarrow{} ((((if 0 <z zz then zz else c (n + 1) fi = 0) {}\mRightarrow{} (mdist(d;x;y) < (r1/r(n + 1))))
\mwedge{} ((if 0 <z zz then zz else c (n + 1) fi = 1) {}\mRightarrow{} (r < mdist(d;x;y)))
\mwedge{} ((if 0 <z zz then zz else c (n + 1) fi = 2) {}\mRightarrow{} (r0 < r)))
\mwedge{} ((if 0 <z zz then zz else c (n + 1) fi = 1)
{}\mRightarrow{} (if 0 <z yy then yy else c ((n + 1) + 1) fi = 1))
\mwedge{} ((if 0 <z zz then zz else c (n + 1) fi = 2)
{}\mRightarrow{} (if 0 <z yy then yy else c ((n + 1) + 1) fi = 2)))
By
Latex:
((D 0 THENA Auto) THEN AutoSplit)
Home
Index