Nuprl Lemma : nat-int-retraction-reals-1

k:{2...}. ∃r:(ℕ ⟶ ℤ) ⟶ ℝ. ∀x:ℝ(accelerate(k;x) (r n.(x (n 1)))) ∈ ℝ)


Proof




Definitions occuring in Statement :  accelerate: accelerate(k;f) real: int_upper: {i...} nat: all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] nat_plus: + int_upper: {i...} le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  nat: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] real: subtract: m so_apply: x[s] squash: T less_than: a < b
Lemmas referenced :  int-int-retraction-reals-1 real-regular decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf real_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int nat_wf le_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot subtract_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf all_wf accelerate_wf regular-int-seq_wf nat_plus_wf condition-implies-le minus-add minus-one-mul minus-one-mul-top add-associates add-zero int_upper_wf squash_wf true_wf minus-minus add-swap iff_weakening_equal subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination dependent_set_memberEquality setElimination rename natural_numberEquality unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality dependent_pairFormation functionExtensionality functionEquality because_Cache equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity approximateComputation int_eqEquality addEquality minusEquality imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}k:\{2...\}.  \mexists{}r:(\mBbbN{}  {}\mrightarrow{}  \mBbbZ{})  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x:\mBbbR{}.  (accelerate(k;x)  =  (r  (\mlambda{}n.(x  (n  +  1)))))



Date html generated: 2017_10_03-AM-10_07_06
Last ObjectModification: 2017_07_05-PM-03_52_56

Theory : reals


Home Index