Nuprl Lemma : not-rpositive

[x:ℝ]. rnonneg(-(x)) supposing ¬rpositive(x)


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) rpositive: rpositive(x) rminus: -(x) real: uimplies: supposing a uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] real: decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q rpositive: rpositive(x) sq_exists: x:{A| B[x]} nat_plus: + prop: satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q rnonneg2: rnonneg2(x) less_than: a < b squash: T less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] int_upper: {i...} guard: {T} so_apply: x[s] rminus: -(x)
Lemmas referenced :  int_term_value_minus_lemma itermMinus_wf nat_plus_subtype_nat mul_preserves_le int_term_value_mul_lemma itermMultiply_wf int_upper_properties subtype_rel_sets less_than_transitivity1 le_wf all_wf int_upper_wf mul_nat_plus rnonneg-iff rpositive_wf not_wf real_wf rminus_wf less_than'_wf nat_plus_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt less_than_wf decidable__lt nat_plus_properties decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin applyEquality setElimination rename hypothesisEquality natural_numberEquality hypothesis unionElimination independent_functionElimination dependent_set_memberFormation isectElimination dependent_set_memberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll productElimination independent_pairEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed multiplyEquality setEquality

Latex:
\mforall{}[x:\mBbbR{}].  rnonneg(-(x))  supposing  \mneg{}rpositive(x)



Date html generated: 2016_05_18-AM-07_13_02
Last ObjectModification: 2016_01_17-AM-01_52_39

Theory : reals


Home Index