Nuprl Lemma : one-rdiv-rmul
∀[x,y:ℝ].  ((r1/y) * x) = (x/y) supposing y ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rdiv: (x/y)
, 
all: ∀x:A. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
rmul_preserves_req, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
req_witness, 
rneq_wf, 
real_wf, 
rinv_wf2, 
req_weakening, 
req_functionality, 
req_transitivity, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul_functionality, 
rmul-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    ((r1/y)  *  x)  =  (x/y)  supposing  y  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_35_32
Last ObjectModification:
2017_04_09-PM-01_47_03
Theory : reals
Home
Index