Step
*
2
1
1
1
1
of Lemma
punctured-ball-boundary-retraction
1. n : ℕ
2. p : ℝ^n
3. ||p|| < r1
4. ¬(n = 0 ∈ ℤ)
5. b : ℝ^n
6. ||b|| = r1
7. ∀x:{x:ℝ^n| ||x|| = r1} . x ≠ p
8. x1 : {x:ℝ^n| x ≠ p}
9. x2 : {x:ℝ^n| x ≠ p}
10. (r0 ≤ (((r(2) * p⋅x1 - p) * r(2) * p⋅x1 - p) - r(4) * ||x1 - p||^2 * (||p||^2 - r1^2)))
∧ (r0 < ||x1 - p||^2)
∧ (||p + quadratic1(||x1 - p||^2;r(2) * p⋅x1 - p;||p||^2 - r1^2)*x1 - p|| = r1)
11. (r0 ≤ (((r(2) * p⋅x2 - p) * r(2) * p⋅x2 - p) - r(4) * ||x2 - p||^2 * (||p||^2 - r1^2)))
∧ (r0 < ||x2 - p||^2)
∧ (||p + quadratic1(||x2 - p||^2;r(2) * p⋅x2 - p;||p||^2 - r1^2)*x2 - p|| = r1)
⊢ x1 ≡ x2
⇒ p + quadratic1(||x1 - p||^2;r(2) * p⋅x1 - p;||p||^2 - r1^2)*x1 - p ≡ p + quadratic1(||x2 - p||^2;r(2)
* p⋅x2 - p;||p||^2 - r1^2)*x2 - p
BY
{ ((RWO "rn-metric-meq" 0 THENM D 0) THENA Auto) }
1
1. n : ℕ
2. p : ℝ^n
3. ||p|| < r1
4. ¬(n = 0 ∈ ℤ)
5. b : ℝ^n
6. ||b|| = r1
7. ∀x:{x:ℝ^n| ||x|| = r1} . x ≠ p
8. x1 : {x:ℝ^n| x ≠ p}
9. x2 : {x:ℝ^n| x ≠ p}
10. (r0 ≤ (((r(2) * p⋅x1 - p) * r(2) * p⋅x1 - p) - r(4) * ||x1 - p||^2 * (||p||^2 - r1^2)))
∧ (r0 < ||x1 - p||^2)
∧ (||p + quadratic1(||x1 - p||^2;r(2) * p⋅x1 - p;||p||^2 - r1^2)*x1 - p|| = r1)
11. (r0 ≤ (((r(2) * p⋅x2 - p) * r(2) * p⋅x2 - p) - r(4) * ||x2 - p||^2 * (||p||^2 - r1^2)))
∧ (r0 < ||x2 - p||^2)
∧ (||p + quadratic1(||x2 - p||^2;r(2) * p⋅x2 - p;||p||^2 - r1^2)*x2 - p|| = r1)
12. req-vec(n;x1;x2)
⊢ req-vec(n;p + quadratic1(||x1 - p||^2;r(2) * p⋅x1 - p;||p||^2 - r1^2)*x1 - p;p + quadratic1(||x2 - p||^2;r(2)
* p⋅x2 - p;||p||^2 - r1^2)*x2 - p)
Latex:
Latex:
1. n : \mBbbN{}
2. p : \mBbbR{}\^{}n
3. ||p|| < r1
4. \mneg{}(n = 0)
5. b : \mBbbR{}\^{}n
6. ||b|| = r1
7. \mforall{}x:\{x:\mBbbR{}\^{}n| ||x|| = r1\} . x \mneq{} p
8. x1 : \{x:\mBbbR{}\^{}n| x \mneq{} p\}
9. x2 : \{x:\mBbbR{}\^{}n| x \mneq{} p\}
10. (r0 \mleq{} (((r(2) * p\mcdot{}x1 - p) * r(2) * p\mcdot{}x1 - p) - r(4) * ||x1 - p||\^{}2 * (||p||\^{}2 - r1\^{}2)))
\mwedge{} (r0 < ||x1 - p||\^{}2)
\mwedge{} (||p + quadratic1(||x1 - p||\^{}2;r(2) * p\mcdot{}x1 - p;||p||\^{}2 - r1\^{}2)*x1 - p|| = r1)
11. (r0 \mleq{} (((r(2) * p\mcdot{}x2 - p) * r(2) * p\mcdot{}x2 - p) - r(4) * ||x2 - p||\^{}2 * (||p||\^{}2 - r1\^{}2)))
\mwedge{} (r0 < ||x2 - p||\^{}2)
\mwedge{} (||p + quadratic1(||x2 - p||\^{}2;r(2) * p\mcdot{}x2 - p;||p||\^{}2 - r1\^{}2)*x2 - p|| = r1)
\mvdash{} x1 \mequiv{} x2
{}\mRightarrow{} p + quadratic1(||x1 - p||\^{}2;r(2) * p\mcdot{}x1 - p;||p||\^{}2
- r1\^{}2)*x1 - p \mequiv{} p + quadratic1(||x2 - p||\^{}2;r(2) * p\mcdot{}x2 - p;||p||\^{}2 - r1\^{}2)*x2 - p
By
Latex:
((RWO "rn-metric-meq" 0 THENM D 0) THENA Auto)
Home
Index