Nuprl Lemma : ravg-dist-when-rleq
∀[x,y:ℝ].  ((ravg(x;y) - x) = ((r1/r(2)) * (y - x))) ∧ ((y - ravg(x;y)) = ((r1/r(2)) * (y - x))) supposing x ≤ y
Proof
Definitions occuring in Statement : 
ravg: ravg(x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
ravg-dist, 
ravg-weak-between, 
req_witness, 
rsub_wf, 
ravg_wf, 
rmul_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rleq_wf, 
real_wf, 
rabs_wf, 
rleq-implies-rleq, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rabs-of-nonneg, 
rmul_functionality, 
req_weakening, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rabs-difference-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
sqequalRule, 
independent_pairEquality, 
isectElimination, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[x,y:\mBbbR{}].
    ((ravg(x;y)  -  x)  =  ((r1/r(2))  *  (y  -  x)))  \mwedge{}  ((y  -  ravg(x;y))  =  ((r1/r(2))  *  (y  -  x))) 
    supposing  x  \mleq{}  y
Date html generated:
2019_10_29-AM-10_03_39
Last ObjectModification:
2019_01_11-AM-11_10_53
Theory : reals
Home
Index