Nuprl Lemma : real-vec-between_functionality

n:ℕ. ∀a1,a2,b1,b2,c1,c2:ℝ^n.  (req-vec(n;a1;a2)  req-vec(n;b1;b2)  req-vec(n;c1;c2)  (a1-b1-c1 ⇐⇒ a2-b2-c2))


Proof




Definitions occuring in Statement :  real-vec-between: a-b-c req-vec: req-vec(n;x;y) real-vec: ^n nat: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q real-vec-between: a-b-c exists: x:A. B[x] member: t ∈ T prop: cand: c∧ B uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a uiff: uiff(P;Q)
Lemmas referenced :  i-member_wf rooint_wf int-to-real_wf req-vec_wf real-vec-add_wf real-vec-mul_wf rsub_wf real-vec-between_wf real-vec_wf nat_wf req-vec_functionality real-vec-add_functionality real-vec-mul_functionality req_weakening req-vec_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality promote_hyp hypothesis productEquality cut introduction extract_by_obid isectElimination natural_numberEquality because_Cache independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a1,a2,b1,b2,c1,c2:\mBbbR{}\^{}n.
    (req-vec(n;a1;a2)  {}\mRightarrow{}  req-vec(n;b1;b2)  {}\mRightarrow{}  req-vec(n;c1;c2)  {}\mRightarrow{}  (a1-b1-c1  \mLeftarrow{}{}\mRightarrow{}  a2-b2-c2))



Date html generated: 2016_10_26-AM-10_17_46
Last ObjectModification: 2016_09_25-PM-00_52_03

Theory : reals


Home Index