Nuprl Lemma : real-vec-dist-from-zero2

[n:ℕ]. ∀[p:ℝ^n].  (d(λi.r0;p) ||p||)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-norm: ||x|| real-vec: ^n req: y int-to-real: r(n) nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: subtype_rel: A ⊆B implies:  Q uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness real-vec-dist_wf int-to-real_wf int_seg_wf real-vec-norm_wf real-vec_wf istype-nat real-vec-dist-symmetry req_functionality req_weakening req_inversion real-vec-dist-from-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt setElimination rename productElimination hypothesis universeIsType natural_numberEquality applyEquality because_Cache independent_functionElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType independent_isectElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].    (d(\mlambda{}i.r0;p)  =  ||p||)



Date html generated: 2019_10_30-AM-08_29_34
Last ObjectModification: 2019_07_08-PM-10_00_01

Theory : reals


Home Index