Nuprl Lemma : reals-connected-ext
Connected(ℝ)
Proof
Definitions occuring in Statement : 
connected: Connected(X), 
real: ℝ
Definitions unfolded in proof : 
member: t ∈ T, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
spreadn: spread3, 
isl: isl(x), 
btrue: tt, 
it: ⋅, 
bfalse: ff, 
let: let, 
isr: isr(x), 
decdr-to-bool: bool(d), 
pi1: fst(t), 
pi2: snd(t), 
cover-real: cover-real(d; a; b; cb), 
accelerate: accelerate(k;f), 
altered-seq1: altered-seq1(d; a; b; x; n), 
blended-real: blended-real(k;x;y), 
outl: outl(x), 
altered-seq2: altered-seq2(d; a; b; x; n), 
outr: outr(x), 
cover-search-left: cover-search-left(d;a;b;x), 
WCPR: WCPR(F;x;G), 
WCP: WCP(F;f;G), 
mu: mu(f), 
mu-ge: mu-ge(f;n), 
eq_bool: p =b q, 
bor: p ∨bq, 
band: p ∧b q, 
cover-search-right: cover-search-right(d;a;b;x), 
reals-connected, 
inhabited-covers-real-implies-ext, 
assert_functionality_wrt_uiff, 
connectedness-main-lemma-ext, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
reals-connected, 
lifting-strict-callbyvalue, 
istype-void, 
strict4-spread, 
lifting-strict-decide, 
strict4-decide, 
inhabited-covers-real-implies-ext, 
assert_functionality_wrt_uiff, 
connectedness-main-lemma-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
Connected(\mBbbR{})
Date html generated:
2019_10_30-AM-07_37_15
Last ObjectModification:
2019_10_10-AM-11_48_44
Theory : reals
Home
Index