Nuprl Lemma : rless-cases1

x,y:ℝ.  ((x < y)  (∀z:ℝ((x < z) ∨ (z < y))))


Proof




Definitions occuring in Statement :  rless: x < y real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) and: P ∧ Q prop: guard: {T} or: P ∨ Q rsub: y iff: ⇐⇒ Q
Lemmas referenced :  radd-positive-implies rsub_wf rless-implies-rless int-to-real_wf radd_wf real_term_polynomial itermSubtract_wf itermVar_wf itermAdd_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 real_wf rless_wf radd-ac radd-rminus-both radd-preserves-rless rminus_wf rless_functionality radd_comm radd_functionality req_weakening radd-rminus-assoc radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination natural_numberEquality independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination inrFormation lemma_by_obid inlFormation unionElimination promote_hyp

Latex:
\mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mforall{}z:\mBbbR{}.  ((x  <  z)  \mvee{}  (z  <  y))))



Date html generated: 2017_10_03-AM-08_39_44
Last ObjectModification: 2017_07_28-AM-07_30_53

Theory : reals


Home Index