Nuprl Lemma : rless_transitivity

x,y,z:ℝ.  ((x < y)  (y < z)  (x < z))


Proof




Definitions occuring in Statement :  rless: x < y real: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] nat_plus: + or: P ∨ Q decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top so_lambda: λ2x.t[x] real: int_upper: {i...} le: A ≤ B guard: {T} so_apply: x[s] uiff: uiff(P;Q) cand: c∧ B subtype_rel: A ⊆B less_than: a < b squash: T
Lemmas referenced :  false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff le_wf imax_ub int_upper_subtype_int_upper imax_lb int_formula_prop_le_lemma intformle_wf decidable__le int_upper_properties less_than_transitivity1 all_wf int_upper_wf imax_wf less_than_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties imax_strict_ub real_wf rless_wf rless-iff4
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination isectElimination natural_numberEquality setElimination rename inlFormation unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll dependent_set_memberEquality addEquality applyEquality because_Cache inrFormation setEquality imageElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (y  <  z)  {}\mRightarrow{}  (x  <  z))



Date html generated: 2016_05_18-AM-07_05_34
Last ObjectModification: 2016_01_17-AM-01_52_22

Theory : reals


Home Index