Nuprl Lemma : rminimum_wf

[n,m:ℤ].  ∀[x:{n..m 1-} ⟶ ℝ]. (rminimum(n;m;k.x[k]) ∈ ℝsupposing n ≤ m


Proof




Definitions occuring in Statement :  rminimum: rminimum(n;m;k.x[k]) real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  squash: T less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s] prop: and: P ∧ Q top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] rminimum: rminimum(n;m;k.x[k])
Lemmas referenced :  int_seg_wf int_seg_properties rmin_wf istype-less_than int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf decidable__lt istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le subtract_wf real_wf primrec_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies functionIsType equalitySymmetry equalityTransitivity axiomEquality imageElimination productElimination rename setElimination productIsType addEquality applyEquality universeIsType independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination natural_numberEquality dependent_functionElimination hypothesisEquality dependent_set_memberEquality_alt hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[n,m:\mBbbZ{}].    \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  (rminimum(n;m;k.x[k])  \mmember{}  \mBbbR{})  supposing  n  \mleq{}  m



Date html generated: 2019_11_06-PM-00_29_20
Last ObjectModification: 2019_11_05-AM-11_55_32

Theory : reals


Home Index