Nuprl Lemma : rminimum_wf
∀[n,m:ℤ].  ∀[x:{n..m + 1-} ⟶ ℝ]. (rminimum(n;m;k.x[k]) ∈ ℝ) supposing n ≤ m
Proof
Definitions occuring in Statement : 
rminimum: rminimum(n;m;k.x[k])
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
rminimum: rminimum(n;m;k.x[k])
Lemmas referenced : 
int_seg_wf, 
int_seg_properties, 
rmin_wf, 
istype-less_than, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermSubtract_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
subtract_wf, 
real_wf, 
primrec_wf
Rules used in proof : 
inhabitedIsType, 
isectIsTypeImplies, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
imageElimination, 
productElimination, 
rename, 
setElimination, 
productIsType, 
addEquality, 
applyEquality, 
universeIsType, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[n,m:\mBbbZ{}].    \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  (rminimum(n;m;k.x[k])  \mmember{}  \mBbbR{})  supposing  n  \mleq{}  m
Date html generated:
2019_11_06-PM-00_29_20
Last ObjectModification:
2019_11_05-AM-11_55_32
Theory : reals
Home
Index