Step
*
2
1
1
1
of Lemma
rmul-limit
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. ∀k:ℕ+. ∀large(n).{|x[n] - a| ≤ (r1/r(k))}
6. ∀k:ℕ+. ∀large(n).{|y[n] - b| ≤ (r1/r(k))}
7. m : ℕ+
8. |b| ≤ r(m)
9. ∀n:ℕ. (|x[n]| ≤ r(m))
10. k : ℕ+
11. |x[2 * m * k]| ≤ r(m)
12. ∀large(n).{|y[n] - b| ≤ (r1/r(2 * m * k))}
13. ∀large(n).{|x[n] - a| ≤ (r1/r(2 * m * k))}
14. N : ℕ
15. ∀n:ℕ. ((N ≤ n)
⇒ ((|x[n] - a| ≤ (r1/r(2 * m * k))) ∧ (|y[n] - b| ≤ (r1/r(2 * m * k)))))
16. n : ℕ
17. N ≤ n
⊢ |(x[n] * y[n]) - a * b| ≤ (r1/r(k))
BY
{ (InstHyp [⌜n⌝] (-3)⋅ THEN Auto) }
1
1. x : ℕ ⟶ ℝ
2. y : ℕ ⟶ ℝ
3. a : ℝ
4. b : ℝ
5. ∀k:ℕ+. ∀large(n).{|x[n] - a| ≤ (r1/r(k))}
6. ∀k:ℕ+. ∀large(n).{|y[n] - b| ≤ (r1/r(k))}
7. m : ℕ+
8. |b| ≤ r(m)
9. ∀n:ℕ. (|x[n]| ≤ r(m))
10. k : ℕ+
11. |x[2 * m * k]| ≤ r(m)
12. ∀large(n).{|y[n] - b| ≤ (r1/r(2 * m * k))}
13. ∀large(n).{|x[n] - a| ≤ (r1/r(2 * m * k))}
14. N : ℕ
15. ∀n:ℕ. ((N ≤ n)
⇒ ((|x[n] - a| ≤ (r1/r(2 * m * k))) ∧ (|y[n] - b| ≤ (r1/r(2 * m * k)))))
16. n : ℕ
17. N ≤ n
18. |x[n] - a| ≤ (r1/r(2 * m * k))
19. |y[n] - b| ≤ (r1/r(2 * m * k))
⊢ |(x[n] * y[n]) - a * b| ≤ (r1/r(k))
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
3. a : \mBbbR{}
4. b : \mBbbR{}
5. \mforall{}k:\mBbbN{}\msupplus{}. \mforall{}large(n).\{|x[n] - a| \mleq{} (r1/r(k))\}
6. \mforall{}k:\mBbbN{}\msupplus{}. \mforall{}large(n).\{|y[n] - b| \mleq{} (r1/r(k))\}
7. m : \mBbbN{}\msupplus{}
8. |b| \mleq{} r(m)
9. \mforall{}n:\mBbbN{}. (|x[n]| \mleq{} r(m))
10. k : \mBbbN{}\msupplus{}
11. |x[2 * m * k]| \mleq{} r(m)
12. \mforall{}large(n).\{|y[n] - b| \mleq{} (r1/r(2 * m * k))\}
13. \mforall{}large(n).\{|x[n] - a| \mleq{} (r1/r(2 * m * k))\}
14. N : \mBbbN{}
15. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} ((|x[n] - a| \mleq{} (r1/r(2 * m * k))) \mwedge{} (|y[n] - b| \mleq{} (r1/r(2 * m * k)))))
16. n : \mBbbN{}
17. N \mleq{} n
\mvdash{} |(x[n] * y[n]) - a * b| \mleq{} (r1/r(k))
By
Latex:
(InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-3)\mcdot{} THEN Auto)
Home
Index