Nuprl Lemma : rsum-rewrite-test
Σ{r(i) | 1≤i≤10} ≤ Σ{r(1 + i) | 1≤i≤10}
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}, 
rleq: x ≤ y, 
int-to-real: r(n), 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
so_apply: x[s], 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}
Lemmas referenced : 
rsum_functionality_wrt_rleq2, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
le_wf, 
int_seg_wf, 
int-to-real_wf, 
rsum_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
rleq-int
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
addEquality, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
setElimination, 
rename
Latex:
\mSigma{}\{r(i)  |  1\mleq{}i\mleq{}10\}  \mleq{}  \mSigma{}\{r(1  +  i)  |  1\mleq{}i\mleq{}10\}
Date html generated:
2016_05_18-AM-07_45_28
Last ObjectModification:
2016_01_17-AM-02_06_42
Theory : reals
Home
Index