Nuprl Lemma : rv-between-inner-trans

n:ℕ. ∀a,b,c,d:ℝ^n.  (a-b-d  b-c-d  a-b-c)


Proof




Definitions occuring in Statement :  rv-between: a-b-c real-vec: ^n nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: rv-between: a-b-c and: P ∧ Q cand: c∧ B real-vec-sep: a ≠ b subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rge: x ≥ y rgt: x > y guard: {T}
Lemmas referenced :  real-vec-between-inner-trans real-vec_wf nat_wf rv-between_wf rv-between-sep real-vec-dist-between int-to-real_wf real-vec-dist_wf real_wf rleq_wf radd_wf rless_functionality req_weakening trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal rleq_weakening_rless radd_functionality_wrt_rless1
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination because_Cache productElimination independent_pairFormation natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a-b-d  {}\mRightarrow{}  b-c-d  {}\mRightarrow{}  a-b-c)



Date html generated: 2016_10_26-AM-10_38_23
Last ObjectModification: 2016_09_25-AM-00_17_58

Theory : reals


Home Index