Nuprl Lemma : rv-between-inner-trans
∀n:ℕ. ∀a,b,c,d:ℝ^n.  (a-b-d 
⇒ b-c-d 
⇒ a-b-c)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rv-between: a-b-c
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
real-vec-sep: a ≠ b
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rge: x ≥ y
, 
rgt: x > y
, 
guard: {T}
Lemmas referenced : 
real-vec-between-inner-trans, 
real-vec_wf, 
nat_wf, 
rv-between_wf, 
rv-between-sep, 
real-vec-dist-between, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
radd_wf, 
rless_functionality, 
req_weakening, 
trivial-rless-radd, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening_rless, 
radd_functionality_wrt_rless1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a-b-d  {}\mRightarrow{}  b-c-d  {}\mRightarrow{}  a-b-c)
Date html generated:
2016_10_26-AM-10_38_23
Last ObjectModification:
2016_09_25-AM-00_17_58
Theory : reals
Home
Index