Nuprl Lemma : real-vec-dist-between
∀n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c 
⇒ (d(a;c) = (d(a;b) + d(b;c))))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
real-vec-between: a-b-c
, 
real-vec: ℝ^n
, 
req: x = y
, 
radd: a + b
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
top: Top
, 
guard: {T}
, 
rsub: x - y
Lemmas referenced : 
real-vec-between_wf, 
real-vec_wf, 
nat_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
radd_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
rmul_wf, 
rabs_wf, 
req_functionality, 
req_weakening, 
radd_functionality, 
real-vec-dist_functionality, 
req-vec_weakening, 
real-vec-dist-between-2, 
real-vec-dist-between-1, 
member_rooint_lemma, 
rleq_weakening_rless, 
radd-preserves-rleq, 
rminus_wf, 
rmul_functionality, 
rabs-of-nonneg, 
uiff_transitivity, 
rleq_functionality, 
radd_comm, 
radd-ac, 
radd-rminus-both, 
radd-zero-both, 
req_wf, 
req_transitivity, 
rmul-distrib, 
rmul_over_rminus, 
rmul-one-both, 
rmul_comm, 
rminus_functionality, 
req_inversion, 
radd-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))
Date html generated:
2016_10_26-AM-10_35_13
Last ObjectModification:
2016_09_25-AM-00_15_35
Theory : reals
Home
Index