Nuprl Lemma : real-vec-dist-between

n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c  (d(a;c) (d(a;b) d(b;c))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-between: a-b-c real-vec: ^n req: y radd: b nat: all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-between: a-b-c exists: x:A. B[x] and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) top: Top guard: {T} rsub: y
Lemmas referenced :  real-vec-between_wf real-vec_wf nat_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf radd_wf real-vec-add_wf real-vec-mul_wf rsub_wf rmul_wf rabs_wf req_functionality req_weakening radd_functionality real-vec-dist_functionality req-vec_weakening real-vec-dist-between-2 real-vec-dist-between-1 member_rooint_lemma rleq_weakening_rless radd-preserves-rleq rminus_wf rmul_functionality rabs-of-nonneg uiff_transitivity rleq_functionality radd_comm radd-ac radd-rminus-both radd-zero-both req_wf req_transitivity rmul-distrib rmul_over_rminus rmul-one-both rmul_comm rminus_functionality req_inversion radd-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule because_Cache independent_isectElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  {}\mRightarrow{}  (d(a;c)  =  (d(a;b)  +  d(b;c))))



Date html generated: 2016_10_26-AM-10_35_13
Last ObjectModification: 2016_09_25-AM-00_15_35

Theory : reals


Home Index